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CHAPTER

ONE

ARITHMETIC EXPRESSIONS IN OCAML AND X86 ASSEMBLY

1.1 Assignment overview

This assignment covers the topics of program representation via Abstract Syntax Trees (ASTs), implementation of an
evaluator for arithmetic expressions in OCaml, and pretty printing. There are 3 tasks and 9 questions in this assignment.
One of the questions is marked for glory. This means it is optional and you should do it if you feel ambitious.

1.1.1 What you need to get started

1. Make sure you have a working installation of OCaml and clang. The course development container should have the
necessary pre-requisites already installed.

2. We assume that by now you are familiar with OCaml basics.
3. We assume that you are familiar with basic assembly programming.
4. Download the auxiliary file x86.ml from Brightspace. Do not edit it.

1.1.2 What you need to hand in

Please hand in a .zip file containing the following
1. A brief report documenting your solution. Acceptable report formats are.pdf, .rtf, and.md. For each question

and for each task, briefly (1 – 4 sentences) describe your implementation or answer. Write concisely.
2. All the source files needed to reproduce your solution. Two pieces of code from the assignment description are to

be copied into your solution. These are
1. The OCaml code for the expr type declaration below.
2. x86.ml OCaml file. Do not modify this file.

We do not prescribe how to organize your solution in terms of modules or folder structure, but note that a relatively
simple organization should be sufficient for this assignment. Your solution must work with OCaml 5.0.0 on a
modern x86-64 Linux system, such as Ubuntu 22.04 LTS (for example in the course’s Docker container).

Running make in the root folder of your project must compile your project successfully.

Important

Make sure to understand all the code you hand in, including what is copied from here.

5
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1.2 Arithmetic expressions

We start with the study representing arithmetic expressions. For this, we introduce the following OCaml declarations.

(* -- Use this in your solution without modifications -- *)
(* Defining the type for binary operations *)
type binop = Add | Sub | Mul | Div

(* Defining the type for arithmetic expressions *)
type expr

= Int of int (* Integer constant *)
| BinOp of binop * expr * expr (* Binary operation *)

Here are a few examples of values of type expr.

let expression_01 = Int 5 (* 5 *)

let expression_02 = BinOp (Add, Int 1, expression_01) (* 1+5 *)

let expression_03 = BinOp (Mul, BinOp (Add, Int 2, Int 2), Int 2) (* (2+2)*2 *)

let expression_04 = BinOp (Add, Int 2, BinOp (Mul, Int 2, Int 2)) (* 2+2*2 *)

Given just the above, there is not much we can do yet. Our first task is to write an evaluator.

1.2.1 Evaluator

Task 1: Evaluator for arithmetic expressions

Write a function eval that has type expr -> int for evaluating arithmetic expressions.
As we can see from the type, the function eval should take one argument of type expr and return an integer. For
example, eval expression_03 should return 8. As you work on this task, answer the following questions:
Question 1

Does this function need to recursively explore its argument, and why (or why not)?
Question 2

Why does this function have the return type int? What other return types may be suitable?
Question 3

How does your evaluation handle the case of division by zero? Note that it may be just fine to not special-treat
division by zero, but it is important you understand what actually happens at runtime.

1.2.2 Pretty printer

A pretty printer is a function that takes an internal representation of a data structure, e.g., an AST such as expr and
produces its textual representation, e.g., as a string.
Task 2: Pretty printer for arithmetic expressions

Write a function string_of_expr that has type expr -> string for pretty printing arithmetic expressions.
The output of the pretty printer should be in the format that is accepted by OCaml’s REPL, such as utop, using infix
notation. For example, the following are all acceptable results for string_of_expr expression_04

6 Chapter 1. Arithmetic Expressions in OCaml and x86 Assembly
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2+2*2
2+(2*2)
(2+(2*2))
((2)+((2)*(2)))

As you work on this task, feel free to define additional functions, if needed. You may use the built-in function
string_of_int for converting integers to strings, and string concatenation operation ^, e.g., "Hello " ^
"world". As you work on this task, answer the following questions:
Question 4

Are the functions you have defined recursive, and why (or why not)?
Question 5 (glory)

Make sure you avoid unnecessary parentheses, assuming standard precedence. Explain how you implement this.

1.2.3 Using both the evaluator and the pretty printer

With both the evaluator and the pretty printer ready, they can be put together, for example using the following expression.

let expressions
= [ expression_01 ; expression_02 ; expression_03 ; expression_04] in

let print_expr e = Printf.printf ("%s = %d\n") (string_of_expr e) (eval e) in
List.map print_expr expressions

The exact output will depend on your implementation of the printer. Here is one example output.

5 = 5
1 + 5 = 6
(2 + 2) * 2 = 8
2 + 2 * 2 = 6

1.3 x86 representation

We now switch our attention to a low-level program representation. Our main tool here is an AST for x86 programs,
and its associated pretty printer, provided in the file x86.ml. We use this AST representation to construct assembly
programs in OCaml. There are several advantages to using an AST instead of directly representing assembly programs as
strings.

1. Separation of concerns. A dedicated representation lets us focus on the semantics of the programs we produce,
while the pretty printer handles the syntactic details.

2. Well-formedness. A well-designed AST helps in avoiding nonsensical programs, e.g., referring to a non-existing
register. Additional well-formedness checks can be programmed as separate passes over the AST.

3. Opportunities for further analysis. AST data structures are essential for implementing other analyses or optimiza-
tion, e.g., dead-code elimination.

Checkpoint

Before proceeding further, please download and study the provided x86.ml file.

1.3. x86 representation 7
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1.3.1 Using x86 AST

Next, we see how to use the x86 AST. We proceed with the following steps.
1. Construct an OCaml value corresponding to an assembly program, and print it.
2. Compile the resulting assembly program.
3. Run the compiled binary and output the return value.

Producing assembly program programmatically

The following OCaml declaration constructs an AST for an assembly program that returns value 23.

let asm_example =
let open Asm in (* Open Asm module locally; this brings

the helper functions from that module
into the local scope *)

[ gtext "example" (* Global label *)
[ (Movq, [~$ 23; ~% Rax]) (* Store 23 in register %rax.

This is the register we must use
for returning values from a function
according to System V ABI *)

; (Retq, []) (* Return instruction *)
]]

As you study the above example, answer the following questions:
Question 6

What is the OCaml type of asm_example?
Question 7

How would you rewrite this to use the Asm module without the local module open directive?
Question 8

Could we have used text instead of gtext? Why?

Note

Some platforms, e.g., Intel Macs, require the exported labels to be prefixed with an underscore, e.g., _example.
This is known as name mangling, and has been historically used to prevent collision with reserved names [Lev00].
Linux does not require this.

We can pretty print the above program as follows

let _ = Printf.printf "%s\n" (string_of_prog asm_example)

This will produce the output

.text

.globl example
example:

movq $23, %rax
retq

8 Chapter 1. Arithmetic Expressions in OCaml and x86 Assembly
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Compiling the assembly program

To run this assembly program, we follow the approach where we link it against a C program that calls the function that
we have declared, in this case: example. This step depends on the following.

1. The text of the assembly program is saved in a .s file so that it can be processed by clang, e.g., example.s.
2. There is a C wrapper that calls our example function. We can use a simple program like this

/* main.c: C wrapper for our assembly program */
#include <stdio.h>
extern int example (); /* the name of our function */

int main() {
int result = example();
return result;

}

Save this file as main.c
3. Call clang to compile and link both files

clang main.c example.s

Note

ArmMac users (M1/M2), prepend the call to clang witharch -x86_64, e.g., arch -x86_64 clang main.c
example.s. You need Rosetta 2 installed for this. See also the note on mangling above.

This will create a binary with the default name a.out. If you want a different name for the output, use the compiler -o
flag.

Executing the produced binary

We run the produced binary as follows

./a.out

We can inspect the output by prompting the exit status shell variable $?. For example, if we run

echo $?

immediately after the previous command, we should get the value 23.

Handling return values greater than 255

If you modify the program to return a value greater than 255, e.g., replace the literal 23 with 2023, you will run into
an issue: POSIX reserves only one byte for process return values. This restriction is justified in the context of operating
systems because process return values are typically used for distinguishing normal vs. erroneous exits.
Question 9

What output do you get from echo $? when returning the value 2023?

1.3. x86 representation 9
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To handle results greater than 255, we need a workaround. Instead of returning the value to the OS, we will print it on
the console. We extend our C program with a function for printing integers, print_int, that can be called from the
assembly. The resulting OCaml and C programs look as follows.

(* Ocaml expression that constructs the assembly program. *)
let dolphin_main =

let open Asm in
[ gtext "example" [

(Pushq, [~% Rbp]) (* Stack alignment before call *)
; (Movq, [~$ 2023; ~% Rdi ] ) (* System V ABI requires passing the

first argument via register %rdi *)
; (Callq, [ ~$$ "print_int"]) (* Calling the C function to print *)
; (Movq, [~$ 0; ~% Rax]) (* Return 0 to indicate normal exit *)
; (Popq, [~% Rbp]) (* Stack re-alignment *)
; (Retq, [])
]]

/* main.c: C wrapper for assembly programs */

#include <stdio.h>
extern int example ();

int main() {
int result = example();
return result;

}

void print_int (int x) {
printf ("%d\n", x);

}

If you repeat the steps earlier with pretty printing of the assembly text, saving it as example.s, and compiling and
running the resulting binary ./a.out, we will get the output

2023

It is no longer necessary to echo $? other than to ensure that the program exits normally with 0.
Finally, now that we have introduced both the high-level and the low-level representations, we can work with both of
them.
Task 3: Translate the following 5 OCaml expressions to assembly

Consider the following OCaml declarations

let task3_exp1 = BinOp (Add, Int 20, BinOp (Mul, Int 26, Int 58))
let task3_exp2 = BinOp (Mul, Int 5, BinOp (Div, Int 1, Int 10))
let task3_exp3 = BinOp (Sub, Int 31, Int 870)
let task3_exp4 = BinOp (Mul, BinOp (Add, BinOp (Div, Int 6, BinOp (Add, Int 10, Int␣

↪49)), Int 10),
BinOp (Add, BinOp (Sub, BinOp (Mul, Int 70, Int 77), BinOp (Div, Int 12,␣

↪Int 9)), Int 5))
let task3_exp5 = BinOp (Sub, BinOp (Div, Int 34, Int 72), BinOp (Div, Int 17, Int 46))

Create a list of OCaml values, named task3_asm1, task3_asm2, … that are x86 assembly translations of these
arithmetic expressions. These translations are to be done manually, without introducing any automation. Your translation
should not implement any shortcuts or optimizations, e.g., returning pre-computed constant outputs (we study optimiza-
tions later in the course). Neither should it be unnecessarily clunky.

10 Chapter 1. Arithmetic Expressions in OCaml and x86 Assembly
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For each expression, cross-reference the output from your evaluator with the output from running the translated assembly.
Describe in your report how you implement cross-referencing, and whether you found any inconsistencies during this
process.

1.3. x86 representation 11
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CHAPTER

TWO

EXPRESSION PROGRAMS AND X86 ASSEMBLY

2.1 Assignment overview

This assignment covers the language of expression programs, their semantic analysis, and compilation to a subset of x86.
There are 4 tasks and 12 questions in this assignment. Questions marked for glory are optional. Do them only if you feel
ambitious and have the time.

2.1.1 What you need to get started

1. Everything from Assignment 1, including x86.ml file that is the same as before.
2. Programming in OCaml. We recommend you familiarize yourself with everything up to and including Section 5,

plus Section 7.1, of the OCaml book. This includes the following concepts.
1. Programming with environments (aka associative maps) in OCaml. See the following resources in the OCaml

book:
• Chapter 3.8 has a basic example of creating environments using associative lists.
• Chapter 5.9 explains how to use the Map functionality from the OCaml standard library.

2. Higher-order programming in OCaml, e.g., using functions such as List.fold_left. See Chapter 4 of
the OCaml book.

3. Basics of modular programming in OCaml, in particular the use of functors when working with the standard
library. See Chapter 5 of the OCaml book.

4. Programming with references in OCaml. See Chapter 7.1 of the OCaml book.

2.1.2 What you need to hand in

Please hand in a .zip file containing the following
1. A brief report documenting your solution. Acceptable report formats are.pdf, .rtf, and.md. For each question

and for each task, briefly (1 – 4 sentences) describe your implementation or answer. Write concisely.
2. All the source files needed to reproduce your solution. Three pieces of code from the assignment description are

to be copied into your solution. These are
1. The OCaml code for the eprog type declaration below in Section 2.2.
2. The OCaml code for the semant_result type declaration in Section 2.3.
3. x86.ml OCaml file. Do not modify this file.
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Your project must compile.
We recommend that you organize your codebase into several files (remember also that each file is a module in
OCaml): one for the definition of eprog and its pretty printing, one for example programs, one for the semantic
analysis, one for the evaluation, and one for the translation. Please take a look at the Dune build management for
OCaml. A relatively simple dune configuration should be sufficient for this project. Your solution must work with
OCaml 5.0.0 on a modern x86-64 Linux system, such as Ubuntu 22.04 LTS.

Important

Make sure to understand all the code you hand in, including what is copied from here.

2.2 Expression programs

This assignment revolves around a simple programming language that we call the language of expression programs. This
language is a direct extension of the language of arithmetic expressions from the first assignment. It has the following
AST.

(* -- Use this in your solution without modifications *)
(* Defining the type for binary operations *)
type binop =

| Add | Sub | Mul | Div

type varname = string (* variable names are strings *)

(* Defining the type for arithmetic expressions *)
type expr =

| Int of int (* Integer constant *)
| BinOp of binop * expr * expr (* Binary operation *)
| Var of varname (* Variable lookup *)

(* Defining the type of statements *)
type estmt =

| Val of varname * expr (* Binding variable to a value *)
| Input of varname (* Input statement *)

(* Expression program is a list of statements
followed by an expression *)

type eprog = estmt list * expr

The core change from the arithmetic expressions is the introduction of immutable variables. There are two ways to bind
a variable to a value.

1. The input statement reads an integer value from the console and binds it to the variable.
2. The val statement evaluates an arithmetic expression and binds the result to the variable.

We refer to the above operations as expression statements, and represent them using the type estmt.
Because variable bindings are immutable, they can only be bound once. To refer to variables, the declaration for expres-
sions now includes a variable lookup constructor, Var of varname. An expression program is a list of statements
(that is, either input or val bindings) followed by one return expression. The type eprog captures this in its definition as
a tuple consisting of two items

1. A list of expression statements estmt, and
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2. An expression
For representing variables, we use the built-in OCaml string type.

2.2.1 Concrete syntax

For concrete syntax, we adopt the following notation
1. Input statements are written using the syntax input x

2. Value binding statements are written using the syntax val x = e, where e is the binding expression.
3. Return expression is written as return e.

For example, the following concrete syntax

input x
val y = x + 1
return x + y

represents the program given by this AST

let eprog_01: eprog = (
[ Input "x" ; Val ("y", BinOp (Add, Var "x", Int 1)) ],
BinOp (Add, Var "x", Var "y"))

Task 1: Pretty printer for expression programs

Write a function string_of_eprog that has type eprog -> string for pretty printing expression programs
using the above notation. You probably want to reuse and extend the pretty printer for expressions you have written in the
first assignment.

2.3 Semantic analysis

Semantic analysis is a compilation phase that reports type and other semantic errors in the program. In our case, we have
two kinds of errors to report

1. Undeclared variables. An important consideration in language design is what to do with undeclared variables. For
example, the undeclared variable x in the program

let y = x + 1
return y

In this assignment, we want to prevent such programs and therefore report undeclared variables as errors.
2. Duplicate bindings. Because our language does not have any notion of nested scopes and mutation, there is little

value in duplicate bindings, e.g., the following program will be rejected because of the duplicate binding of y

input y
let y = x
return y + 2

We use the following Ocaml declarations for error reporting

2.3. Semantic analysis 15
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(* -- Use this in your solution without modifications -- *)
type semant_error

= Undeclared of varname
| Duplicate of varname

type semant_result
= Ok
| Error of semant_error list

Note

If your semantic analysis and expression program declarations live in different modules (as we suggested earlier)
remember to open the expression program module.

Task 2: Semantic analysis

Write a function semant that has type eprog -> semant_result that returns whether the program has any type
errors, in which case the errors are collected in a list of type semant_error.
Question 1

Does semant need to be recursively inspect its argument? Why or why not? What auxiliary functions do you
define? Are any of them recursive or not and why?

Question 2
Describe how you keep track of variable declarations in your implementation. What data structure(s) do you use?

Question 3 (glory *)
Implement the warning of unused variables. Extend the definition of semant_result to incorporate a warning
possibility and extend the implementation of semant appropriately.

2.4 Evaluator

Our evaluator takes programs that are accepted by the semantic analysis and runs them.
Task 2: Evaluation of expression programs

Write a function eval that has the type eprog -> int for evaluating expression programs. For evaluating the input
statements, you can use something like the following OCaml code

let eprog_input()
= Printf.printf "Please enter an integer: " ; read_line () |> int_of_string

Question 4
In the above code, ; is the OCaml sequencing and |> is the OCaml pipeline operator. How would you write the
implementation of eprog_input using just the let expressions without these operators?

As you further work on this task, answer the following questions.
Question 5 (glory)

The function int_of_string that we use above raises an exception if its argument is not an integer. How would
you handle this situation?
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Question 6
What data structure(s) do you use in the implementation of the interpreter?

Question 7
What runtime errors are possible during the execution of your interpreter? Are they preventable, and how?

2.5 Compiling to x86 assembly

Task 3: Compiling expression programl to x86

Write a function eprog_to_x86 that has the type eprog -> X86.prog that compiles expression programs to x86.
For reading input from the console, use the following C function

#include <stdio.h> /* make sure these two includes are */
#include <inttypes.h> /* present in the start of your C file */

int64_t read_integer () {
int64_t value;
printf("Please enter an integer: ");
scanf("%" PRId64 "" , &value);
return value;

}

For reporting the result of the program, use the function print_int, as in Assignment 1.
The following two sections describe one potential approach to this task. Note that this is only one of the ways of imple-
menting this task. Other approaches are possible, and you are welcome to pursue them in your assignment; in that case it
is still a good idea to understand the approach outlined below.

2.5.1 Stack organization via spilling

A simple (admittedly quite inefficient) way of x86 code generation is via spilling, where each local variable has a reserved
slot on the stack. Additionally, the results of the intermediate binary operations are likewise stored on the stack in a
reserved location. The following image illustrates such a stack organization.

2.5. Compiling to x86 assembly 17
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2.5.2 Implementation via spilling

To implement code generation via spilling, we need a number of building blocks.
• Introduce a layout type that is an associative map for mapping variables to their respective slot positions on the
stack.

• Introduce a counter for keeping track of the temporaries for the intermediate results of the binary operations.
• Break down your implementation into auxiliary functions, such as

– cg_stmt of type layout -> estmt -> X86.ins list that takes the layout, a single statement,
and returns a list of instructions corresponding to the assembly code for that statement. The layout is needed
to store the result of the statement in the right stack slot.

– cg_expr of type layout -> expr -> X86.ins list * X86.operand that takes the layout, a
single expression, and returns a pair of the instructions corresponding to the assembly code for that expression
and an X86 operand that has the result of that expression. The layout is needed to read variables from the
stack.
This programming pattern of returning a list of instructions (or something akin to that) and an operand,
indicatingwhere to find the result after those instructions are executed, is commonplace for “flattening” phases,
as is the case here because we translate from a tree data structure (expressions) to a list data structure (assembly
instructions).
For example, for integer expression (Int n), function cg_expr can return a pair [], (~$ n). For
binops, the instructions list will include moving data into the right registers, doing the binop, and stor-
ing the result on the stack in a temporary slot. The operand will be the offset from the base pointer to
the temporary. For example, if the temporary has index j the operand is the displacement X86.Ind3
(Lit(-8*(N+j+1)), Rbp), where N is the number of the regular locals. Remember to increase the
temp counter, when needed.

One more concern is what information we need to generate the correct function prologue and epilogues. For example,
the function prologue must include an instruction for extending the stack – such as subtracting from the %rsp register.
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But how much to subtract? The answer depends on two things.
1. The number of the variables in the source program. This is easy to compute by, e.g., taking the length of the list

of expression statements.
2. The number of temporaries needed for the code generation of all of the expressions. This number is not as readily

available, because it depends on the expressions in the rest of the program. This means that the code generation of
the prologue might need to be postponed until the code generation of the rest of the program is complete. This is
an interesting, but not unusual in compilation, phenomenon: the prologue – an early section of the x86 program –
turns out to be the one generated at the very end of the translation process!

As you further work on this assignment, answer the following questions.
Question 8 (glory *)

The C function scanf that we use here provides no means of error reporting or error detection when the input is
malformed. How would you implement a robust input of integers from a console in C?

Question 9
What data structure(s) do you use in the implementation of the compiler?

Question 10
Describe inefficiencies that are present in your solution, if any.

Question 11 (glory ** )
Pick one or several optimizations to implement in your compilation, and generate optimized code. Explain which
optimizations you are implementing and how they affect the produced code. What data structures and intermediate
representations do you use in the implementation of these optimizations?
Extra-glory: can you benchmark the quantitative improvements from your optimizations? Explain your bench-
marking approach.

Task 4: Putting it all together, examples, and cross-testing

In this task, we put together all the ingredients developed in the earlier tasks.
1. Write a function interpret of the type eprog -> unit that takes an expression program as its input, runs

the semantic analysis, and depending on the result of the semantic analysis either prints out the errors or proceeds
to evaluate the program using the eval function you have implemented.

2. Write a function compile of the type eprog -> unit that takes an expression program as its input, runs the
semantic analysis, and depending on the result of the semantic analysis either prints out the errors or proceeds to
compile the program into assembly.

3. Write 5 example programs that cover all the features of the language.
4. Cross-test that both evaluation and compilation agree on the results.

Question 12.
Why are your example programs good programs for testing your implementations? Did you discover any bugs
during the cross-testing?

2.5. Compiling to x86 assembly 19
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CHAPTER

THREE

LLVM-- PROGRAMMING

3.1 Assignment overview

This assignment covers writing and debugging LLVM-- programs with a focus on loops and conditionals. There are 3
tasks and 6 questions in this assignment. Questions marked for glory are optional. Do them only if you feel ambitious
and have the time.

3.1.1 What you need to get started

Make sure you understand everything from the lectures on LLVM-- (the lectures on Friday, Sep 15th, and Wednesday,
Sep 20th). That is, everything in LLVM-- chapter except for aggregate and named types, GEP, and phi nodes.

Important

Revisit Arithmetic Expressions in OCaml and x86 Assembly and be sure you recall the specialties of your setup with
respect to architecture and/or operating system.

3.1.2 What you need to hand in

Please hand in a .zip file containing the following
1. A brief report documenting your solution. Acceptable report formats are .pdf, .rtf, and .md. For each task

and question, briefly (1 – 4 sentences) describe your implementation or answer. Write concisely.
2. All the source files needed to reproduce your solution. This also includes the C code provided. Please explain

in your report how the solution could be reproduced, e.g., calling make (if you have made a Makefile), the
command line to call clang, etc. You do not need to provide any code for Task 3. Just write the answer in the
report.

Note

If you are answering any of the glory questions, please submit them as separate solutions, i.e., in a separate, clearly
marked subfolder in the .zip file of your submission.

Important

Make sure to understand all the code you hand in, including what is copied from here.
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3.2 Write LLVM-- by hand

Consider the following Dolphin program.

void number_perfect(n : int){
var i = 1;
while(i <= n){
var temp = 0;
for (var j = 1; j < i; j = j + 1){

let d = i % j;
temp = temp + (d == 0 ? j : 0);

}
if(temp == i)

print_perfect(i);
i = i + 1;

}
}

The function print_perfect is defined as follows in a C file that is to be linked with the LLVM file you produce:

#include <stdio.h> /* make sure these two includes are */
#include <inttypes.h> /* present in the start of your C file */

void print_perfect(int64_t i) {
printf("%" PRId64 ": perfect\n", i);

}

int main() {
number_perfect(10000);
return 0;

}

The following is the expected output:

6: perfect
28: perfect
496: perfect
8128: perfect

Task 1: Rewrite in your favorite language

Pick your favorite programming language (second-favourite if your favourite is already Dolphin) and write the program
above, including the part written in C above. In your report, explain briefly, in a short paragraph, what the program does.
Write comments explaining the most important lines of code in the code you hand in (the code in your favorite language).
Try to keep your program as close as you can to the code given above. A note about perfect numbers: a number is said
to be perfect if it is equal to the sum of all its proper divisors, i.e., not the number itself.
Task 2: Translate to LLVM--

Translate the Dolphin code above, the function number_perfect, into LLVM--.
Remember to test yourLLVM-- program by linking and running with different inputs by changing the number with which
the function number_perfect is called (on the C side). Recall that this can be done using the following commands:

clang perfect.ll main.c
./a.out
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where perfect.ll is your LLVM-- code and main.c is the C code above.
Question 1

How many basic block does your program have? Explain how you count basic blocks.
Question 2

How do you handle division by zero? Do you produce code for checking that the divisor is non-zero? Why?
Question 3 (glory **)

Use Phi nodes to translate the ternary operator (?:) above.
Question 4 (glory ***)

This is an extension of question 3 above. Write your LLVM-- code without the use of the alloca instruction.
Task 3: Debug LLVM--

Consider the following Dolphin program.

int rec_fun(acc : int, n : int){
if(n > 0)
return rec_fun(acc + 2, n - 1);

return acc;
}

First, convince yourself that when called rec_fun(0, -10) will return 0.
A buggy compiler could produce the following code for this program:

define i64 @rec_fun (i64 %acc, i64 %n) {
%n6 = alloca i64
%acc5 = alloca i64
store i64 %acc, i64* %acc5
store i64 %n, i64* %n6
%load_local_var7 = load i64, i64* %n6
%arith_comp_op8 = icmp slt i64 %load_local_var7, 0
br i1 %arith_comp_op8, label %ifthenelse_true_branch9, label %ifthenelse_false_
↪branch10

ifthenelse_true_branch9:
%load_local_var12 = load i64, i64* %acc5
%arith_bin_op13 = add i64 %load_local_var12, 2
%load_local_var14 = load i64, i64* %n6
%arith_bin_op15 = sub i64 %load_local_var14, 1
%call16 = call i64 @rec_fun (i64 %arith_bin_op13, i64 %arith_bin_op15)
ret i64 %call16

after_return17:
br label %ifthenelse_merge11

ifthenelse_false_branch10:
br label %ifthenelse_merge11

ifthenelse_merge11:
%load_local_var18 = load i64, i64* %acc5
ret i64 %load_local_var18

after_return19:
unreachable

}

In the LLVM-- code above, when the function rec_fun(0, -10) is called it crashes with a segmentation fault.
Identify the issue in the code above that causes the segmentation fault. Explain why the segmentation fault occurs.
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Question 5
Make an educated guess as to what the compiler has done wrong to produce such a buggy code (this is about the
bug in the compiler that leads to the bug in the code of Task 3).

Question 6
Find at least one other way a subtle mistake in the code generation phase of the compiler can cause a segmentation
fault in a program like the one above.
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CHAPTER

FOUR

DOLPHIN – PHASE 1

Attention

This is a group assignment. You should have formed groups by now. If not, please do so as soon as possible. There
will an announcement on BrightSpace explaining how you should register your groups on BrightSpace.

4.1 Assignment overview

This assignment covers translating a fragment of Dolphin language, in the AST form, into LLVM--. There are 3 tasks
and 3 questions in this assignment. Questions marked for glory are optional. Do them only if you feel ambitious and have
the time.

4.1.1 What you need to get started

• For LLVM--: make sure you understand everything from the lectures on LLVM-- (the lectures on Friday, Sep
15th, andWednesday, Sep 20th). That is, everything in the LLVM-- chapter except for aggregate and named types,
GEP, and phi nodes.

• For semantic analysis: this will be covered in lectures in week 39.
• For programmatic LLVM-- code generation: this is partly covered in TA classes in week 39. This will be comple-
mented in lectures in week 39. (This part, in spirit, resembles programmatic generation of x86 code we hand in
assignment 2.)

• For OCaml, the assignment uses OCaml records which are covered in Section 3.4 of the OCaml book.

Important

You will need files symbol.ml, symbol.mli, cfgBuilder.ml, cfgBuilder.mli, and ll.ml as they
have been released in the TA classes.
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4.1.2 What you need to hand in

Please hand in a .zip file containing the following
1. A brief report documenting your solution. Acceptable report formats are .pdf, .rtf, and .md. For each task

and question, briefly (1 – 4 sentences) describe your implementation or answer. Write concisely.
2. All the source files needed to reproduce your solution. This also includes the C code provided. Please explain

in your report how the solution could be reproduced, e.g., calling make (if you have made a Makefile), the
command line to call clang, etc.

Note

If you are answering any of the glory questions, please submit them as separate solutions, i.e., in a separate, clearly
marked subfolder in the .zip file of your submission.

Important

Make sure to understand all the code you hand in, including what is copied from here. (The code for pretty printing
(typed) ASTs is an exception here; see the appendix below.)

4.2 The Abstract Syntax Tree (AST) of Dolphin (phase 1)

In this phase, a Dolphin program is simply a sequence of statements. Intuitively, this is to be understood as the body of
the main function.
The OCaml types for the AST describing programs is given below:

(* -- Use this in your solution without modifications *)
type ident = Ident of {name : string;}

type typ = | Int | Bool

type binop =
| Plus | Minus | Mul | Div | Rem | Lt | Le | Gt | Ge | Lor | Land | Eq | NEq

type unop = | Neg | Lnot

type expr =
| Integer of {int : int64}
| Boolean of {bool : bool}
| BinOp of {left : expr; op : binop; right : expr}
| UnOp of {op : unop; operand : expr}
| Lval of lval
| Assignment of {lvl : lval; rhs : expr;}
| Call of {fname : ident; args : expr list}
and lval =
| Var of ident

type statement =
| VarDeclStm of {name : ident; tp : typ option; body : expr}
| ExprStm of {expr : expr option}

(continues on next page)
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(continued from previous page)
| IfThenElseStm of {cond : expr; thbr : statement; elbro : statement option}
| CompoundStm of {stms : statement list}
| ReturnStm of {ret : expr}

type program = statement list

Action item

Put the AST declarations above in a module called Ast. That is, make a file called ast.ml and copy the code above
into it. Do not change the code above.

The types ident (program identifiers), typ (types), binop (binary operators), and unop (unary operations) are self-
explanatory.
Expressions consist of the following (in the order they appear in type expr above):

• Integer literals
• Booleans literals
• Binary operations consisting of the a left operand, a binary operation, and a right operand
• Unary operations consisting of a unary operation and an operand
• L-values, i.e., values that can appear on the left-hand-side of an assignment expression (see below), in our fragment
the only possible l-values are variables

• Assignments consisting of an l-value, and right-hand-side expression assigned to the l-value in question
• Function call consisting of a function name (an identifier), and a list of arguments. Note: even though the phase-
1 fragment of Dolphin has no function definitions, programs do have access to a very limited standard library,
customised for this phase.

Statements consist of the following:
• Variable declarations consisting of a name (identifier), optionally a type, and a body (an initialization expression).
The optionality of the type annotation for variable declarations can be seen in the difference following two decla-
rations of variable x in var x = 10; and var x : int = 10; as written in Dolphin’s syntax.

• Expression statements which allow us to use expressions as statements (this is restricted in semantic analysis). Note
that the expression is optional. A None expression statement corresponds to the empty statement, i.e., ; on its own
in languages like C and Java.

• If statements where cond is the condition (an expression), thbr is the statement for the then branch, and elbro
is the optional else branch.

• Compound statements: these correspond to statement blocks. Think of code blocks in C and Java enclosed in curly
braces. Note: compound statements serve two purposes. They delimit the scope of declarations, and allow us to
use a statement blocks inside other statements, e.g., a statement block as the body of the then, or else branch of an
if statement.

• Return statement where the result of an expression is returned. (Recall that in this phase, the program being the
body of the main function should return an integer.)
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4.3 The Typed Abstract Syntax Tree (AST) of Dolphin (phase 1)

The typed AST differs from the AST in that it includes all the necessary type information for (LLVM) code generation.
The differences between the two notions of AST can be subtle. Please pay attention to the details.
The OCaml types for the typed AST describing programs is given below:

(* -- Use this in your solution without modifications *)
module Sym = Symbol

type ident = Ident of {sym : Sym.symbol}

type typ = Void | Int | Bool | ErrorType

type binop = Plus | Minus | Mul | Div | Rem | Lt | Le | Gt | Ge | Lor | Land | Eq |␣
↪NEq

type unop = Neg | Lnot

type expr =
| Integer of {int : int64}
| Boolean of {bool : bool}
| BinOp of {left : expr; op : binop; right : expr; tp : typ}
| UnOp of {op : unop; operand : expr; tp : typ}
| Lval of lval
| Assignment of {lvl : lval; rhs : expr; tp : typ}
| Call of {fname : ident; args : expr list; tp : typ}
and lval =
| Var of {ident : ident; tp : typ}

type statement =
| VarDeclStm of {name : ident; tp : typ; body : expr}
| ExprStm of {expr : expr option}
| IfThenElseStm of {cond : expr; thbr : statement; elbro : statement option}
| CompoundStm of {stms : statement list}
| ReturnStm of {ret : expr}

type param = Param of {paramname : ident; typ : typ}

type funtype = FunTyp of {ret : typ; params : param list}

type program = statement list

Action item

Put the AST declarations above in a module called TypedAst. That is, make a file called typedAst.ml and copy
the code above into it. Do not change the code above.

Below, we enumerate and explain the main differences between (untyped) ASTs we saw earlier and typed ASTs:
• Types now include the Void type, and the ErrorType type. While the source (ASTs) do not have void in them,
library functions, which are featured in this phase 1 Dolphin fragment, can involve the Void type. It is needed for
error recovery where the compiler does not merely stop when it first encounters a type error in the program, but
continues and reports all errors that it detects.

• Identifiers, instead using strings for names, use symbols. Symbols are much more efficient to use than strings.
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• Many expressions, e.g., unary and binary operations, now also include a type. This extra type, is the type of the
entire expression, that is, a binary operation for comparison, with both left and right expressions bing integers, will
have its as Bool. Note also how variable declarations, which optionally included types in ASTs, always include a
type in typed ASTs (it is not an option anymore). Note that assignments are also accompanied by a type. The reason
for this is that an assignment, in addition to storing the right-hand-side value into the relevant memory address, also
produces this right-hand-side value as a result. That is, the expression x = y = 1 + 4 is a valid expression,
which should be understood in two steps, in the first step assigns 5 to y and results in 5, in the second step, the
result of the first step, i.e., 5, is assigned to x. The following is also a valid expression: x = (y = 4 - 2) +
7. It assigns 2 to y and 9 to x.

Inclusion of the typing information allows one to directly determine the type of an expression with a shallow inspection
of the expression when necessary, e.g., when we need to decide what LLVM type to use when generating LLVM-- code.
This can be done using the following OCaml functions:

let rec type_of_expr = function
| TAst.Integer _ -> TAst.Int
| TAst.Boolean _ -> TAst.Bool
| TAst.BinOp {tp; _} -> tp
| TAst.UnOp {tp; _} -> tp
| TAst.Lval lvl -> type_of_lval lvl
| TAst.Assignment {tp; _} -> tp
| TAst.Call {tp; _} -> tp

and type_of_lval = function
| TAst.Var {tp; _} -> tp

4.4 Semantic analysis of Dolphin programs (phase 1)

The first task asks you to implement semantic analysis. The semantic analysis must check the program semantically. That
is, it must make sure that the program satisfies to the criteria for being a valid program that we can produce executable
code for. At a high level view this process takes an AST (something of type Ast.program above) and produces a
typed AST (something of type TypedAst.program above). This requires to determine all the necessary types to
produce a typed AST, e.g., the types of all variable declaration, if omitted, must be inferred. This, however, is not the
only requirement. There are a few extra requirements, some of which are specific to this phase. In particular, not all
OCaml values of type TypedAst.program are semantically valid programs. The following are extra conditions, that
should be guaranteed by semantic analysis, and can therefore be assumed when producing LLVM-- code.

1. No expression, except for a call to a function with Void return type can have type Void. This also includes the
type (inferred for) declared variables. That is, a program var x = f(); where f is a function with Void return
type is not semantically valid. Hence, one needs to be careful when inferring types.

2. Arithmetic operations Plus, Minus, Mul, Div, and Rem can only be applied to integer expressions and produce
integer results.

3. Comparison operators Lt, Le, Gt, and Ge (in this phase) can only be applied to integer operands and result in a
boolean.

4. Comparison operators Eq and NEq require the two operands to have the same (non-void) type and result in a
boolean.

5. Boolean operationsLor andLand can only be applied to boolean operands and result in a boolean. These operators
are short-circuiting (explained later).

6. Variables should be properly resolved and type checked. Note that this is a non-local requirement. In other words,
semantic analysis must use environment to remember the type of all variables that are in scope.

7. A well-typed assignment must have a right-hand-side that has the same (non-void) type as the l-value it is being
assigned to.
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8. A valid call must correspond to a call to a known function, in this phase just library functions. The types and
number of arguments must match the parameters of the function. Furthermore, the type of the overall expression
must the same as the return type of the function.

9. The body given for variable declaration should match its type, if provided. If not provided, the type of the variable
is inferred to be the type of the body expression which must not be void.

10. A valid expression statement can either be an assignment, or a function call. Any other expression is not considered
valid as an expression statement.

11. The condition of an if statement must be an expression of type boolean. The then branch and the else branch (if
present) must valid statements.

12. A compound statement is valid if all its statements are valid. Any variable declared inside a compound statement
are only valid within that block (and obviously only after that declaration itself within the block).

13. Variables can shadow one another. That is, when used, a variable refers to its closest declaration, e.g., var x =
10; var x = 12; print_integer(x); print_integer(x); is valid and should print 12 twice, var
x = 10; {var x = 12; print_integer(x);} print_integer(x); should print 12 followed
by 10. However, var x = 10; {var x = 12;} print_integer(x); print_integer(x);
should print 10 twice, etc.

14. Note that function names and local variables live in the same scope. This means that local variables can mask
functions. That is, var f = 10; f(12); should always produce an error even if function f exists and has the
appropriate type.

15. Return statements are only valid (in this phase) if the expression returned is an integer.
16. All programs (in this phase) must always end in a return statement (which must be an integer).

Note

In case of questions regarding ambiguity in the above semantic rules ask questions on the forum. We will try our
best to answer promptly. In case necessary, e.g., if you are in doubt and there is no enough time (please do not leave
assignments for the last minute!), use your best judgment (you must be able to reasonably defend it) and explain your
reasoning in your report. We will do our best to be understanding.

Important

The details of type checking and type inference are discussed in class.

Task 1: Implement semantic analysis

Implement semantic analysis for phase 1 of Dolphin as described above.
The following template OCaml code is a good starting point to embark in this assignment. Here, we assume that a module
Errors exists which declares an exception TypeError and a number of errors, e.g., the TypeMismatch error used
below. This is explained below.

exception Unimplemented (* your code should eventually compile without this exception␣
↪*)

let typecheck_typ = function
| Ast.Int -> TAst.Int
| Ast.Bool -> TAst.Bool

(continues on next page)
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(* should return a pair of a typed expression and its inferred type. you can/should␣
↪use typecheck_expr inside infertype_expr. *)

let rec infertype_expr env expr =
match expr with
| _ -> raise Unimplemented

and infertype_lval env lvl =
match lvl with
| _ -> raise Unimplemented

(* checks that an expression has the required type tp by inferring the type and␣
↪comparing it to tp. *)

and typecheck_expr env expr tp =
let texpr, texprtp = infertype_expr env expr in
if texprtp <> tp then raise Unimplemented;
texpr

(* should check the validity of a statement and produce the corresponding typed␣
↪statement. Should use typecheck_expr and/or infertype_expr as necessary. *)

let rec typecheck_statement env stm =
match stm with
| _ -> raise Unimplemented

(* should use typecheck_statement to check the block of statements. *)
and typecheck_statement_seq env stms = raise Unimplemented

(* the initial environment should include all the library functions, no local␣
↪variables, and no errors. *)

let initial_environment = raise Unimplemented

(* should check that the program (sequence of statements) ends in a return statement␣
↪and make sure that all statements are valid as described in the assignment. Should␣
↪use typecheck_statement_seq. *)

let typecheck_prog prg = raise Unimplemented

We recommend that you create three separate modules for this task. One module is for the semantic analysis following
the example above; let us call this the Semant module. The other two should be the Errors module, and the Env
module, roughly following the structures below. (These modules will be discussed further in class.)

(* Errors module *)
module Sym = Symbol
module TAst = TypedAst
module TPretty = TypedPretty

type error =
| TypeMismatch of {expected : TAst.typ; actual : TAst.typ}
(* other errors to be added as needed. *)

(* Useful for printing errors *)
let error_to_string err =

match err with
| TypeMismatch {expected; actual; _} -> Printf.sprintf "Type mismatch: expected %s␣

↪but found %s." (TPretty.typ_to_string expected) (TPretty.typ_to_string actual)

(* Env module *)

exception Unimplemented (* your code should eventually compile without this exception␣
↪*)

(continues on next page)
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type environment = | (* to be defined *)

(* create an initial environment with the given functions defined *)
let make_env function_types = raise Unimplemented

(* insert a local declaration into the environment *)
let insert_local_decl env sym typ = raise Unimplemented

(* lookup variables and functions. Note: it must first look for a local variable and␣
↪if not found then look for a function. *)

let lookup_var_fun env sym = raise Unimplemented

Question 1
Reflect on the usage of type inference as opposed to type checking in your implementation. Briefly describe what
principle guides you in writing your code, that is when you decide to use one vs the other.

Question 2
Reflect on the error recovery strategy in your implementation. How do you implement it?

4.5 Code generation

The compiler must generate valid LLVM code for all semantically valid programs. For this purpose we use the cfg-
Builder module.
Task 2: Implement code generation

Implement code generation for phase 1 of Dolphin as described above.
There are a few key points to pay attention to when producing code for Dolphin programs:

1. Dolphin has a guaranteed order of evaluation: left to right. For instance, in binary operations, the left operand is
executed first. Once the result of the first operand is obtained, then the program continues with executing the right
operand, followed by the operation itself. Similarly, function arguments are computed from left to right before the
function call.

2. Pay attention to the short-circuiting nature of boolean and (&&) and or (||) operations. These operations first
compute the left operand. If the left operand determines the result of the operation (if it is false in case of && or
true in case of ||), the right operand is not computed. This is the standard semantics for such operations. Here,
the LLVM program generated must perform the analysis of branch appropriately so as to not compute the right
operand, if not necessary. To maintain SSA form, we must either allocate temporary stack space for the result (as
we have seen earlier), or use phi nodes (this is one of the glory points below).

3. As we have done before when translating programs by hand to LLVM, local variables are allocated on the stack
(using LLVM--‘s alloca instruction). We need an environment to remember the assigned LLVM-- register for
each variable and its LLVM-- type. This is in many ways similar to the environment we use for semantic analysis.
However, we no longer need to have functions and their types in the environment. All the necessary information,
i.e., the return type, and the type of arguments, is already stored in the typed AST.

Question 3 (glory **)
Use phi nodes to re-implement short-circuiting behavior of boolean and and or operators.

Task 3: Testing and consolidation

In this task, we consolidate the two parts from the previous tasks, and test our project in an end-to-end fashion.
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1. Write a top-level function compile_prog that given an AST, runs the semantic analysis on it. If there are any
errors, they should be printed on standard error output, and the program exits with exit code 1. If there are no
errors, it proceeds to generate the LLVM translation. The result of the translation should be output on standard
output, and the program exits with exit code 0.

2. Write a test corpus consisting of 10 or more example programs that cover all the features of the language. It is
important that the tests you write are relevant. Think about negative and positive tests. For negative tests, the
critical aspect is the semantic analysis. In particular, if your semantic analysis reports a particular type of an error,
your test corpus should include a program that exhibits that kind of error. For positive tests, your tests should cover
all features of the language, i.e., all possible binary operations, calls to the standard library, etc.

Attention

Do not take this part of the assignment lightly. Use this task as a vehicle for discovering bugs and logical errors
in your project.

4.6 Appendix

You will need libraries printbox and printbox-text to use pretty printers below. These can be installed using
opam using the following command opam install printbox printbox-text

These pretty printers produce a so-called box which is the terminology that printbox uses to refer to formatted,
structured texts. A box ca be printed as follows:

PrintBox_text.output stdout (Pretty.program_to_tree prog)

This will print the AST of the program as a tree.

4.6.1 pretty printer for ASTs (module Pretty)

module PBox = PrintBox
open Ast

(* producing trees for pretty printing *)
let typ_style = PBox.Style.fg_color PBox.Style.Green
let ident_style = PBox.Style.fg_color PBox.Style.Yellow
let fieldname_style = ident_style
let keyword_style = PBox.Style.fg_color PBox.Style.Blue

let info_node_style = PBox.Style.fg_color PBox.Style.Cyan

let make_typ_line name = PBox.line_with_style typ_style name
let make_fieldname_line name = PBox.line_with_style fieldname_style name
let make_ident_line name = PBox.line_with_style ident_style name
let make_keyword_line name = PBox.line_with_style keyword_style name

let make_info_node_line info = PBox.line_with_style info_node_style info

let ident_to_tree (Ident {name}) = make_ident_line name

let typ_to_tree tp =
match tp with

(continues on next page)
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| Bool -> make_typ_line "Bool"
| Int -> make_typ_line "Int"

let binop_to_tree op =
match op with
| Plus -> make_keyword_line "Plus"
| Minus -> make_keyword_line "Minus"
| Mul -> make_keyword_line "Mul"
| Div -> make_keyword_line "Div"
| Rem -> make_keyword_line "Rem"
| Lt -> make_keyword_line "Lt"
| Le -> make_keyword_line "Le"
| Gt -> make_keyword_line "Gt"
| Ge -> make_keyword_line "Ge"
| Lor -> make_keyword_line "Lor"
| Land -> make_keyword_line "Land"
| Eq -> make_keyword_line "Eq"
| NEq -> make_keyword_line "NEq"

let unop_to_tree op =
match op with
| Neg -> make_keyword_line "Neg"
| Lnot -> make_keyword_line "Lnot"

let rec expr_to_tree e =
match e with
| Integer {int; _} -> PBox.hlist ~bars:false [make_info_node_line "IntLit("; PBox.

↪line (Int64.to_string int); make_info_node_line ")"]
| Boolean {bool; _} -> PBox.hlist ~bars:false [make_info_node_line "BooleanLit(";␣

↪make_keyword_line (if bool then "true" else "false"); make_info_node_line ")"]
| BinOp {left; op; right; _} -> PBox.tree (make_info_node_line "BinOp") [expr_to_

↪tree left; binop_to_tree op; expr_to_tree right]
| UnOp {op; operand; _} -> PBox.tree (make_info_node_line "UnOp") [unop_to_tree op;␣

↪expr_to_tree operand]
| Lval l -> PBox.tree (make_info_node_line "Lval") [lval_to_tree l]
| Assignment {lvl; rhs; _} -> PBox.tree (make_info_node_line "Assignment") [lval_to_

↪tree lvl; expr_to_tree rhs]
| Call {fname; args; _} ->
PBox.tree (make_info_node_line "Call")

[PBox.hlist ~bars:false [make_info_node_line "FunName: "; ident_to_tree fname];
PBox.tree (make_info_node_line "Args") (List.map (fun e -> expr_to_tree e)␣

↪args)]
and lval_to_tree l =

match l with
| Var ident -> PBox.hlist ~bars:false [make_info_node_line "Var("; ident_to_tree␣

↪ident; make_info_node_line ")"]

let rec statement_to_tree c =
match c with
| VarDeclStm {name; tp; body} -> PBox.tree (make_keyword_line "VarDeclStm")
[PBox.hlist ~bars:false [make_info_node_line "Ident: "; ident_to_tree name];
PBox.hlist ~bars:false [make_info_node_line "Type: "; Option.fold ~none:PBox.

↪empty ~some:typ_to_tree tp];
PBox.hlist ~bars:false [make_info_node_line "Body: "; expr_to_tree body]]

| ExprStm {expr; _} -> PBox.hlist ~bars:false [make_info_node_line "ExprStm: ";␣
↪Option.fold ~none:PBox.empty ~some:expr_to_tree expr]
| IfThenElseStm {cond; thbr; elbro; _} ->

(continues on next page)
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PBox.tree (make_keyword_line "IfStm")

([PBox.hlist ~bars:false [make_info_node_line "Cond: "; expr_to_tree cond];␣
↪PBox.hlist ~bars:false [make_info_node_line "Then-Branch: "; statement_to_tree␣
↪thbr]] @

match elbro with None -> [] | Some elbr -> [PBox.hlist ~bars:false [make_info_
↪node_line "Else-Branch: "; statement_to_tree elbr]])
| CompoundStm {stms; _} -> PBox.tree (make_info_node_line "CompoundStm") (statement_

↪seq_to_forest stms)
| ReturnStm {ret; _} -> PBox.hlist ~bars:false [make_keyword_line "ReturnValStm: ";␣

↪expr_to_tree ret]
and statement_seq_to_forest stms = List.map statement_to_tree stms

let program_to_tree prog =
PBox.tree (make_info_node_line "Program") (statement_seq_to_forest prog)

4.6.2 pretty printer for ASTs (module TypedPretty)

module Sym = Symbol
module PBox = PrintBox
open TypedAst

let typ_to_string = function
| Void -> "void"
| Int -> "int"
| Bool -> "bool"
| ErrorType -> "'type error'"

(* producing trees for pretty printing *)
let ident_to_tree (Ident {sym}) = Pretty.make_ident_line (Sym.name sym)

let typ_to_tree tp =
match tp with
| Void -> Pretty.make_typ_line "Void"
| Int -> Pretty.make_typ_line "Int"
| Bool -> Pretty.make_typ_line "Bool"
| ErrorType -> PBox.line_with_style (PBox.Style.set_bg_color PBox.Style.Red PBox.

↪Style.default) "ErrorType"

let binop_to_tree op =
match op with
| Plus -> Pretty.make_keyword_line "PLUS"
| Minus -> Pretty.make_keyword_line "Minus"
| Mul -> Pretty.make_keyword_line "Mul"
| Div -> Pretty.make_keyword_line "Div"
| Rem -> Pretty.make_keyword_line "Rem"
| Lt -> Pretty.make_keyword_line "Lt"
| Le -> Pretty.make_keyword_line "Le"
| Gt -> Pretty.make_keyword_line "Gt"
| Ge -> Pretty.make_keyword_line "Ge"
| Lor -> Pretty.make_keyword_line "Lor"
| Land -> Pretty.make_keyword_line "Land"
| Eq -> Pretty.make_keyword_line "Eq"
| NEq -> Pretty.make_keyword_line "NEq"

let unop_to_tree op =
(continues on next page)
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match op with
| Neg -> Pretty.make_keyword_line "Neg"
| Lnot -> Pretty.make_keyword_line "Lor"

let rec expr_to_tree e =
match e with
| Integer {int; _} -> PBox.hlist ~bars:false [Pretty.make_info_node_line "IntLit(";␣

↪PBox.line (Int64.to_string int); Pretty.make_info_node_line ")"]
| Boolean {bool; _} -> PBox.hlist ~bars:false [Pretty.make_info_node_line

↪"BooleanLit("; Pretty.make_keyword_line (if bool then "true" else "false"); Pretty.
↪make_info_node_line ")"]
| BinOp {left; op; right; tp; _} -> PBox.tree (Pretty.make_info_node_line "BinOp")␣

↪[typ_to_tree tp; expr_to_tree left; binop_to_tree op; expr_to_tree right]
| UnOp {op; operand; tp; _} -> PBox.tree (Pretty.make_info_node_line "UnOp") [typ_

↪to_tree tp; unop_to_tree op; expr_to_tree operand]
| Lval l -> PBox.tree (Pretty.make_info_node_line "Lval") [lval_to_tree l]
| Assignment {lvl; rhs; tp; _} -> PBox.tree (Pretty.make_info_node_line "Assignment

↪") [typ_to_tree tp; lval_to_tree lvl; expr_to_tree rhs]
| Call {fname; args; tp; _} ->
PBox.tree (Pretty.make_info_node_line "Call")

[typ_to_tree tp;
PBox.hlist ~bars:false [Pretty.make_info_node_line "FunName: "; ident_to_tree␣

↪fname];
PBox.tree (Pretty.make_info_node_line "Args") (List.map (fun e -> expr_to_

↪tree e) args)]
and lval_to_tree l =

match l with
| Var {ident; tp} -> PBox.hlist ~bars:false [Pretty.make_info_node_line "Var(";␣

↪ident_to_tree ident; Pretty.make_info_node_line ")"; PBox.line " : "; typ_to_tree␣
↪tp;]

let rec statement_to_tree c =
match c with
| VarDeclStm {name; tp; body; _} ->
PBox.tree (Pretty.make_keyword_line "VarDeclStm")

[PBox.hlist ~bars:false [Pretty.make_info_node_line "Ident: "; ident_to_tree␣
↪name];

PBox.hlist ~bars:false [Pretty.make_info_node_line "Type: "; typ_to_tree tp];
PBox.hlist ~bars:false [Pretty.make_info_node_line "Body: "; expr_to_tree body]]

| ExprStm {expr; _} -> PBox.hlist ~bars:false [Pretty.make_info_node_line "ExprStm:
↪"; Option.fold ~none:PBox.empty ~some:expr_to_tree expr]
| IfThenElseStm {cond; thbr; elbro; _} ->
PBox.tree (Pretty.make_keyword_line "IfStm")

([PBox.hlist ~bars:false [Pretty.make_info_node_line "Cond: "; expr_to_tree␣
↪cond]; PBox.hlist ~bars:false [Pretty.make_info_node_line "Then-Branch: ";␣
↪statement_to_tree thbr]] @

match elbro with None -> [] | Some elbr -> [PBox.hlist ~bars:false [Pretty.
↪make_info_node_line "Else-Branch: "; statement_to_tree elbr]])
| CompoundStm {stms; _} -> PBox.tree (Pretty.make_info_node_line "CompoundStm")␣

↪(statement_seq_to_forest stms)
| ReturnStm {ret; _} -> PBox.hlist ~bars:false [Pretty.make_keyword_line

↪"ReturnValStm: "; expr_to_tree ret]
and statement_seq_to_forest stms = List.map statement_to_tree stms

let program_to_tree prg =
PBox.tree (Pretty.make_info_node_line "Program") (statement_seq_to_forest prg)
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4.6.3 C runtime

#include <stdio.h> /* make sure these two includes are */
#include <inttypes.h> /* present in the start of your C file */

// your LLVM program must produce a function called dolphin_main of the following␣
↪type.

extern int64_t dolphin_main();

int64_t read_integer () {
int64_t value;
printf("Please enter an integer: ");
scanf("%" PRId64 "" , &value);
return value;

}

void print_integer (int64_t value) {
printf("%" PRId64 "\n" , value);

}

int main(){
return dolphin_main();

}

The following OCaml code defines the type of the two library functions. Use this code, placed in a separate module, to
bootstrap your semantic analysis and code generation.

module TAst = TypedAst
module Sym = Symbol

let make_ident name = TAst.Ident {sym = Sym.symbol name}

let library_functions =
[
(Symbol.symbol "read_integer", TAst.FunTyp {ret = TAst.Int; params = []});
(Symbol.symbol "print_integer", TAst.FunTyp {ret = TAst.Void; params = [Param

↪{paramname = make_ident "value"; typ = TAst.Int}]})
]
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CHAPTER

FIVE

DOLPHIN – PHASE 2

Attention

This is a group assignment. The workload is calibrated for a group of 3.
In case of questions regarding ambiguity of what you should do, ask questions on the forum. If you are in doubt and
there is no enough time, use your best judgment and explain your reasoning in your report.

5.1 Assignment overview

This assignment is builds on the previous assignment and covers translating a fragment of Dolphin language, in the AST
form, into LLVM--. This phase extends the language in two ways.

1. the language is extended with loops.
2. the language is extended to support multiple variable declarations in one declaration statement.

There are 2 tasks and no questions in this assignment. There are no glory questions in this assignment.

5.1.1 What you need to get started

This assignment is continuation of the previous assignment. To get started you need to edit the code from the previous
assignment.

5.1.2 What you need to hand in

Please hand in a .zip file containing the following
1. A brief report documenting your solution. Acceptable report formats are .pdf, .rtf, and .md. For each task

and question, briefly (1 – 4 sentences) describe your implementation or answer. Write concisely.
2. All the source files needed to reproduce your solution. This also includes the C code provided. Please explain

in your report how the solution could be reproduced, e.g., calling make (if you have made a Makefile), the
command line to call clang, etc.

Important

Make sure to understand all the code you hand in, including what is copied from here. (The code for pretty printing
(typed) ASTs is an exception here; see the appendix below.)
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5.2 The Abstract Syntax Tree (AST) of Dolphin (phase 2)

In this phase, a Dolphin program is still simply a sequence of statements. Recall that, intuitively, this is to be understood
as the body of the main function.
The OCaml types for the AST describing programs is given below:

(* -- Use this in your solution without modifications *)
type ident = Ident of {name : string;}

type typ = | Int | Bool

type binop = | Plus | Minus | Mul | Div | Rem | Lt
| Le | Gt | Ge | Lor | Land | Eq | NEq

type unop = | Neg | Lnot

type expr =
| Integer of {int : int64}
| Boolean of {bool : bool}
| BinOp of {left : expr; op : binop; right : expr}
| UnOp of {op : unop; operand : expr}
| Lval of lval
| Assignment of {lvl : lval; rhs : expr;}
| Call of {fname : ident; args : expr list}
and lval =
| Var of ident

type single_declaration =
Declaration of {name : ident; tp : typ option; body : expr}

type declaration_block = DeclBlock of single_declaration list

type for_init =
| FIExpr of expr
| FIDecl of declaration_block

type statement =
| VarDeclStm of declaration_block
| ExprStm of {expr : expr option}
| IfThenElseStm of {cond : expr; thbr : statement; elbro : statement option}
| WhileStm of {cond : expr; body : statement}
| ForStm of { init : for_init option

; cond : expr option
; update : expr option
; body : statement }

| BreakStm
| ContinueStm
| CompoundStm of {stms : statement list}
| ReturnStm of {ret : expr}

type program = statement list

Action item

The AST declarations above should replace the contents of the module called Ast. Do not change the code above.
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Note that in the AST above the types typ, binop, unop, expr, lval, and program have not changed at all. Note
that the VarDeclStm is changed. It no longer consists of an inlined record. Instead, it consists of a declara-
tion_block, which in turn is a list of single_declarations. This change corresponds to allowing declaration
statements to declare multiple variables in one statement, e.g.,

var x : int = 2, z = 5, w = "abc", t = x + z;

The meaning of multiple declarations is to be understood from left to right, and variables declared before can be used in
the initialization expressions of later variables. The declaration statement above is identical in meaning to the following
sequence of declarations.

var x : int = 2;
var z = 5;
var w = "abc";
var t = x + z;

Hint

There should be no major changes necessary, in either semantic analysis or code generation, to support multiple
declarations in one statement, if variable declarations are handled properly in the previous phase. A simple fold over
the list should suffice. Also note that there is no need to assume/enforce that the length of the list is non-empty in this
phase.

The type statement, in the AST declaration above, has four new cases: WhileStm (while loops), ForStm (for loops),
BreakStm (the break statement), and ContinueStm (the continue statement).

• The while loop construction carries a condition expression and a body which is a statement.
• The for loop on the other hand ismore involved. It carries an optional initialization, an optional condition expression,
an optional update expression, and a body statement.
The initialization, if present, is either a declaration block, or an expression. If the initialization of a for loop is a
declaration block, the scope of those declarations is the entire for loop, i.e., condition, update, and the body of the
loop. If either of the initialization or the update parts of the for loop are absent, they should be understood as do
nothing, similarly to empty expression statements (no expression present).
In case of the update expression, or the initialization (when it is an expression), there is no requirement about the
type. They could be expressions of any type, as long as they are well-typed. The condition, on the other hand, when
present should be a boolean expression. When absent, the condition is to be understood as true. As a simple
example, the for loop for(;;){} with no initialization, condition, or update present is an infinite loop that does
nothing, just like while(true){}. Do note that the condition of the while loop must always be present. This
is reflected in type of the AST.

• The break and continue statements, respectively break out of, and go to the beginning of the current loop. Here,
current loop means the innermost enclosing loop (either a while or a for). Note that break and continue statements
should never appear outside a loop. Semantic analysis should check this. For the code generation of the continue
statement it is important to note that continue behaves differently based on whether it innermost enclosing loop is
a for or a while loop. In case of the while loop, the continue statement causes the loop to start over starting with
evaluating the condition of the loop. In case of the for loop, however, the continue statement causes the update
clause to be evaluated before evaluating the loop condition.

Hint

In order to handle break and continue properly one needs to extend the environments. For semantic analysis, the
environment should track whether the part of the program being analyzed is inside a loop or not. For code generation,
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the environment should track the label to jump to in case of break and continue.

5.3 The Typed Abstract Syntax Tree (AST) of Dolphin (phase 2)

Recall the typed AST differs from the AST in that it includes all the necessary type information for (LLVM) code gen-
eration. The differences between the two notions of AST can be subtle. Please pay attention to the details.
The OCaml types for the typed AST describing programs is given below:

(* -- Use this in your solution without modifications *)
module Sym = Symbol

type ident = Ident of {sym : Sym.symbol}

type typ = | Void | Int | Bool | ErrorType

type binop = | Plus | Minus | Mul | Div | Rem | Lt
| Le | Gt | Ge | Lor | Land | Eq | NEq

type unop = | Neg | Lnot

type expr =
| Integer of {int : int64}
| Boolean of {bool : bool}
| BinOp of {left : expr; op : binop; right : expr; tp : typ}
| UnOp of {op : unop; operand : expr; tp : typ}
| Lval of lval
| Assignment of {lvl : lval; rhs : expr; tp : typ}
| Call of {fname : ident; args : expr list; tp : typ}
and lval =
| Var of {ident : ident; tp : typ}

type single_declaration = Declaration of {name : ident; tp : typ; body : expr}

type declaration_block = DeclBlock of single_declaration list

type for_init =
| FIDecl of declaration_block
| FIExpr of expr

type statement =
| VarDeclStm of declaration_block
| ExprStm of {expr : expr option}
| IfThenElseStm of {cond : expr; thbr : statement; elbro : statement option}
| WhileStm of {cond : expr; body : statement}
| ForStm of { init : for_init option

; cond : expr option
; update : expr option
; body : statement }

| BreakStm
| ContinueStm
| CompoundStm of {stms : statement list}
| ReturnStm of {ret : expr}

type param = Param of {paramname : ident; typ : typ}
(continues on next page)
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(continued from previous page)

type funtype = FunTyp of {ret : typ; params : param list}

type program = statement list

Action item

The AST declarations above should replace the contents of the module called TypedAst. Do not change the code
above.

For an explanation of the main differences between (untyped) ASTs we saw earlier and typed ASTs consult the previous
assignment.

5.4 Semantic analysis of Dolphin programs (phase 2)

The first task asks you to update semantic analysis of the previous assignment to support the new extensions.
Task 1: Implement semantic analysis

Implement semantic analysis for phase 2 of Dolphin as described above. Extend the errors in the Errors module to
accommodate new ways a program can be semantically malformed.

5.5 Code generation

Recall that the compiler must generate valid LLVM code for all semantically valid programs. For this purpose we use the
cfgBuilder module.
Task 2: Implement code generation

Implement code generation for phase 2 of Dolphin as described above.
Task 3: Testing and consolidation

In this task, we consolidate the two parts from the previous tasks, and test our project in an end-to-end fashion.
1. You should already have a top-level function compile_prog. If implemented properly before, this function

should not require any changes for this assignment. In other words, ensure the following behavior for com-
pile_prog.

• Given an AST, compile_prog runs the semantic analysis on it. If there are any errors, they should be
printed on standard error output, and the program should exit with exit code 1. If there are no errors, it
proceeds to generate the LLVM translation. The result of the translation should be output on standard output,
and the program exits with exit code 0.

2. Write a test corpus consisting of 10 or more example programs that cover all the new features of the language.
It is important that the tests you write are relevant. Think about negative and positive tests. For negative tests,
the critical aspect is the semantic analysis. In particular, if your semantic analysis reports a particular type of an
error, your test corpus should include a program that exhibits that kind of error. For positive tests, your tests should
cover all new features of the language, i.e., all possible cases of using (and nesting) for and while loops, as well the
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break and continue statements in them, etc. Do remember to produce positive and negative tests for declaration
statements declaring multiple variables.

Attention

Do not take this part of the assignment lightly. Use this task as a vehicle for discovering bugs and logical errors
in your project.

5.6 Appendix

Recall that you will need librariesprintbox andprintbox-text to use pretty printers below. These can be installed
using opam using the following command opam install printbox printbox-text

These pretty printers produce a so-called box which is the terminology that printbox uses to refer to formatted,
structured texts. A box ca be printed as follows:

PrintBox_text.output stdout (Pretty.program_to_tree prog)

This will print the AST of the program as a tree.

5.6.1 pretty printer for ASTs (module Pretty)

module PBox = PrintBox
open Ast

(* producing trees for pretty printing *)
let typ_style = PBox.Style.fg_color PBox.Style.Green
let ident_style = PBox.Style.fg_color PBox.Style.Yellow
let fieldname_style = ident_style
let keyword_style = PBox.Style.fg_color PBox.Style.Blue

let info_node_style = PBox.Style.fg_color PBox.Style.Cyan

let make_typ_line name = PBox.line_with_style typ_style name
let make_fieldname_line name = PBox.line_with_style fieldname_style name
let make_ident_line name = PBox.line_with_style ident_style name
let make_keyword_line name = PBox.line_with_style keyword_style name

let make_info_node_line info = PBox.line_with_style info_node_style info

let ident_to_tree (Ident {name}) = make_ident_line name

let typ_to_tree tp =
match tp with
| Bool -> make_typ_line "Bool"
| Int -> make_typ_line "Int"

let binop_to_tree op =
match op with
| Plus -> make_keyword_line "PLUS"
| Minus -> make_keyword_line "Minus"
| Mul -> make_keyword_line "Mul"

(continues on next page)
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| Div -> make_keyword_line "Div"
| Rem -> make_keyword_line "Rem"
| Lt -> make_keyword_line "Lt"
| Le -> make_keyword_line "Le"
| Gt -> make_keyword_line "Gt"
| Ge -> make_keyword_line "Ge"
| Lor -> make_keyword_line "Lor"
| Land -> make_keyword_line "Land"
| Eq -> make_keyword_line "Eq"
| NEq -> make_keyword_line "NEq"

let unop_to_tree op =
match op with
| Neg -> make_keyword_line "Neg"
| Lnot -> make_keyword_line "Lor"

let rec expr_to_tree e =
match e with
| Integer {int; _} -> PBox.hlist ~bars:false [make_info_node_line "IntLit("; PBox.

↪line (Int64.to_string int); make_info_node_line ")"]
| Boolean {bool; _} -> PBox.hlist ~bars:false [make_info_node_line "BooleanLit(";␣

↪make_keyword_line (if bool then "true" else "false"); make_info_node_line ")"]
| BinOp {left; op; right; _} -> PBox.tree (make_info_node_line "BinOp") [expr_to_

↪tree left; binop_to_tree op; expr_to_tree right]
| UnOp {op; operand; _} -> PBox.tree (make_info_node_line "UnOp") [unop_to_tree op;␣

↪expr_to_tree operand]
| Lval l -> PBox.tree (make_info_node_line "Lval") [lval_to_tree l]
| Assignment {lvl; rhs; _} -> PBox.tree (make_info_node_line "Assignment") [lval_to_

↪tree lvl; expr_to_tree rhs]
| Call {fname; args; _} ->
PBox.tree (make_info_node_line "Call")

[PBox.hlist ~bars:false [make_info_node_line "FunName: "; ident_to_tree fname];
PBox.tree (make_info_node_line "Args") (List.map (fun e -> expr_to_tree e)␣

↪args)]
and lval_to_tree l =

match l with
| Var ident -> PBox.hlist ~bars:false [make_info_node_line "Var("; ident_to_tree␣

↪ident; make_info_node_line ")"]

let single_declaration_to_tree (Declaration {name; tp; body; _}) =
PBox.tree (make_keyword_line "Declaration")
[PBox.hlist ~bars:false [make_info_node_line "Ident: "; ident_to_tree name];
PBox.hlist ~bars:false [make_info_node_line "Type: "; Option.fold ~none:PBox.

↪empty ~some:typ_to_tree tp];
PBox.hlist ~bars:false [make_info_node_line "Body: "; expr_to_tree body]]

let declaration_block_to_tree (DeclBlock declarations) =
PBox.tree (make_keyword_line "VarDecl") (List.map single_declaration_to_tree␣

↪declarations)

let for_init_to_tree = function
| FIDecl db -> PBox.hlist ~bars:false [PBox.line "ForInitDecl: "; declaration_block_

↪to_tree db]
| FIExpr e -> PBox.hlist ~bars:false [PBox.line "ForInitExpr: "; expr_to_tree e]

let rec statement_to_tree c =
match c with

(continues on next page)
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(continued from previous page)
| VarDeclStm db -> PBox.hlist ~bars:false [PBox.line "DeclStm: "; declaration_block_

↪to_tree db]
| ExprStm {expr} -> PBox.hlist ~bars:false [make_info_node_line "ExprStm: "; Option.

↪fold ~none:PBox.empty ~some:expr_to_tree expr]
| IfThenElseStm {cond; thbr; elbro} ->
PBox.tree (make_keyword_line "IfStm")

([PBox.hlist ~bars:false [make_info_node_line "Cond: "; expr_to_tree cond];␣
↪PBox.hlist ~bars:false [make_info_node_line "Then-Branch: "; statement_to_tree␣
↪thbr]] @

match elbro with None -> [] | Some elbr -> [PBox.hlist ~bars:false [make_info_
↪node_line "Else-Branch: "; statement_to_tree elbr]])
| WhileStm {cond; body} ->
PBox.tree (make_keyword_line "WhileStm")

[PBox.hlist ~bars:false [make_info_node_line "Cond: "; expr_to_tree cond];
PBox.hlist ~bars:false [make_info_node_line "Body: "; statement_to_tree body]]

| ForStm {init; cond; update; body} ->
PBox.tree (make_keyword_line "ForStm")

[PBox.hlist ~bars:false [make_info_node_line "Init: "; Option.fold ~none:PBox.
↪empty ~some:for_init_to_tree init];

PBox.hlist ~bars:false [make_info_node_line "Cond: "; Option.fold ~none:PBox.
↪empty ~some:expr_to_tree cond];

PBox.hlist ~bars:false [make_info_node_line "Update: "; Option.fold ~
↪none:PBox.empty ~some:expr_to_tree update];

PBox.hlist ~bars:false [make_info_node_line "Body: "; statement_to_tree body]]
| BreakStm -> make_keyword_line "BreakStm"
| ContinueStm -> make_keyword_line "ContinueStm"
| CompoundStm {stms} -> PBox.tree (make_info_node_line "CompoundStm") (statement_

↪seq_to_forest stms)
| ReturnStm {ret} -> PBox.hlist ~bars:false [make_keyword_line "ReturnValStm: ";␣

↪expr_to_tree ret]
and statement_seq_to_forest stms = List.map statement_to_tree stms

let program_to_tree prog =
PBox.tree (make_info_node_line "Program") (statement_seq_to_forest prog)

5.6.2 pretty printer for ASTs (module TypedPretty)

module Sym = Symbol
module PBox = PrintBox
open TypedAst

let typ_to_string = function
| Void -> "void"
| Int -> "int"
| Bool -> "bool"
| ErrorType -> "'type error'"

(* producing trees for pretty printing *)
let ident_to_tree (Ident {sym}) = Pretty.make_ident_line (Sym.name sym)

let typ_to_tree tp =
match tp with
| Void -> Pretty.make_typ_line "Void"
| Int -> Pretty.make_typ_line "Int"
| Bool -> Pretty.make_typ_line "Bool"

(continues on next page)
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| ErrorType -> PBox.line_with_style (PBox.Style.set_bg_color PBox.Style.Red PBox.

↪Style.default) "ErrorType"

let binop_to_tree op =
match op with
| Plus -> Pretty.make_keyword_line "PLUS"
| Minus -> Pretty.make_keyword_line "Minus"
| Mul -> Pretty.make_keyword_line "Mul"
| Div -> Pretty.make_keyword_line "Div"
| Rem -> Pretty.make_keyword_line "Rem"
| Lt -> Pretty.make_keyword_line "Lt"
| Le -> Pretty.make_keyword_line "Le"
| Gt -> Pretty.make_keyword_line "Gt"
| Ge -> Pretty.make_keyword_line "Ge"
| Lor -> Pretty.make_keyword_line "Lor"
| Land -> Pretty.make_keyword_line "Land"
| Eq -> Pretty.make_keyword_line "Eq"
| NEq -> Pretty.make_keyword_line "NEq"

let unop_to_tree op =
match op with
| Neg -> Pretty.make_keyword_line "Neg"
| Lnot -> Pretty.make_keyword_line "Lor"

let rec expr_to_tree e =
match e with
| Integer {int; _} -> PBox.hlist ~bars:false [Pretty.make_info_node_line "IntLit(";␣

↪PBox.line (Int64.to_string int); Pretty.make_info_node_line ")"]
| Boolean {bool; _} -> PBox.hlist ~bars:false [Pretty.make_info_node_line

↪"BooleanLit("; Pretty.make_keyword_line (if bool then "true" else "false"); Pretty.
↪make_info_node_line ")"]
| BinOp {left; op; right; tp; _} -> PBox.tree (Pretty.make_info_node_line "BinOp")␣

↪[typ_to_tree tp; expr_to_tree left; binop_to_tree op; expr_to_tree right]
| UnOp {op; operand; tp; _} -> PBox.tree (Pretty.make_info_node_line "UnOp") [typ_

↪to_tree tp; unop_to_tree op; expr_to_tree operand]
| Lval l -> PBox.tree (Pretty.make_info_node_line "Lval") [lval_to_tree l]
| Assignment {lvl; rhs; tp; _} -> PBox.tree (Pretty.make_info_node_line "Assignment

↪") [typ_to_tree tp; lval_to_tree lvl; expr_to_tree rhs]
| Call {fname; args; tp; _} ->
PBox.tree (Pretty.make_info_node_line "Call")

[typ_to_tree tp;
PBox.hlist ~bars:false [Pretty.make_info_node_line "FunName: "; ident_to_tree␣

↪fname];
PBox.tree (Pretty.make_info_node_line "Args") (List.map (fun e -> expr_to_

↪tree e) args)]
and lval_to_tree l =

match l with
| Var {ident; tp} -> PBox.hlist ~bars:false [Pretty.make_info_node_line "Var(";␣

↪ident_to_tree ident; Pretty.make_info_node_line ")"; PBox.line " : "; typ_to_tree␣
↪tp;]

let single_declaration_to_tree (Declaration {name; tp; body; _}) =
PBox.tree (Pretty.make_keyword_line "Declaration")
[PBox.hlist ~bars:false [Pretty.make_info_node_line "Ident: "; ident_to_tree␣

↪name];
PBox.hlist ~bars:false [Pretty.make_info_node_line "Type: "; typ_to_tree tp];
PBox.hlist ~bars:false [Pretty.make_info_node_line "Body: "; expr_to_tree body]]

(continues on next page)
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let declaration_block_to_tree (DeclBlock declarations) =
PBox.tree (Pretty.make_keyword_line "VarDecl") (List.map single_declaration_to_tree␣

↪declarations)

let for_init_to_tree = function
| FIDecl db -> PBox.hlist ~bars:false [PBox.line "ForInitDecl: "; declaration_block_

↪to_tree db]
| FIExpr e -> PBox.hlist ~bars:false [PBox.line "ForInitExpr: "; expr_to_tree e]

let rec statement_to_tree c =
match c with
| VarDeclStm db -> PBox.hlist ~bars:false [PBox.line "DeclStm: "; declaration_block_

↪to_tree db]
| ExprStm {expr; _} -> PBox.hlist ~bars:false [Pretty.make_info_node_line "ExprStm:

↪"; Option.fold ~none:PBox.empty ~some:expr_to_tree expr]
| IfThenElseStm {cond; thbr; elbro; _} ->
PBox.tree (Pretty.make_keyword_line "IfStm")

([PBox.hlist ~bars:false [Pretty.make_info_node_line "Cond: "; expr_to_tree␣
↪cond]; PBox.hlist ~bars:false [Pretty.make_info_node_line "Then-Branch: ";␣
↪statement_to_tree thbr]] @

match elbro with None -> [] | Some elbr -> [PBox.hlist ~bars:false [Pretty.
↪make_info_node_line "Else-Branch: "; statement_to_tree elbr]])
| WhileStm {cond; body; _} ->
PBox.tree (Pretty.make_keyword_line "WhileStm")

[PBox.hlist ~bars:false [Pretty.make_info_node_line "Cond: "; expr_to_tree␣
↪cond];

PBox.hlist ~bars:false [Pretty.make_info_node_line "Body: "; statement_to_
↪tree body]]
| ForStm {init; cond; update; body; _} ->
PBox.tree (Pretty.make_keyword_line "ForStm")

[PBox.hlist ~bars:false [Pretty.make_info_node_line "Init: "; Option.fold ~
↪none:PBox.empty ~some:for_init_to_tree init];

PBox.hlist ~bars:false [Pretty.make_info_node_line "Cond: "; Option.fold ~
↪none:PBox.empty ~some:expr_to_tree cond];

PBox.hlist ~bars:false [Pretty.make_info_node_line "Update: "; Option.fold ~
↪none:PBox.empty ~some:expr_to_tree update];

PBox.hlist ~bars:false [Pretty.make_info_node_line "Body: "; statement_to_
↪tree body]]
| BreakStm -> Pretty.make_keyword_line "BreakStm"
| ContinueStm -> Pretty.make_keyword_line "ContinueStm"
| CompoundStm {stms; _} -> PBox.tree (Pretty.make_info_node_line "CompoundStm")␣

↪(statement_seq_to_forest stms)
| ReturnStm {ret; _} -> PBox.hlist ~bars:false [Pretty.make_keyword_line

↪"ReturnValStm: "; expr_to_tree ret]
and statement_seq_to_forest stms = List.map statement_to_tree stms

let program_to_tree prg =
PBox.tree (Pretty.make_info_node_line "Program") (statement_seq_to_forest prg)
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5.6.3 C runtime

The C runtime we use has not changed compared to the previous assignment. See the corresponding description in the
previous assignment
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CHAPTER

SIX

DOLPHIN – PHASE 3

Attention

This is a group assignment. The workload is calibrated for a group of 3.
In case of questions regarding ambiguity of what you should do, ask questions on the forum. If you are in doubt and
there is no enough time, use your best judgment and explain your reasoning in your report.

6.1 Assignment overview

This assignment builds on the previous two assignments: Phase 1 and Phase 2. The main focus of this assignment is
building a frontend for the language of Phase 2. We extend the Dolphin implementation with the following:

1. A lexer that translates the source code into a stream of tokens.
2. A parser that translates a stream of tokens into an AST.

There are 4 tasks and no questions in this assignment. There are no glory questions in this assignment.

6.1.1 What you need to get started

• This assignment is continuation of the previous assignment. To get started you need to edit the code from the
previous assignment.

• You need to understand how OCamllex lexer generator works. See OCamllex documentation.
• You need to understand how Menhir parser generator works. See Menhir documentation.

6.1.2 What you need to hand in

Please hand in a .zip file containing the following
1. A brief report documenting your solution. Acceptable report formats are .pdf, .rtf, and .md. For each task

and question, briefly (1 – 4 sentences) describe your implementation or answer. Write concisely.
2. All the source files needed to reproduce your solution. This also includes the C code provided. Please explain

in your report how the solution could be reproduced, e.g., calling make (if you have made a Makefile), the
command line to call clang, etc.

3. All the tests that you create (see Task 4) should be placed into a directory assignment-06-tests as individual
.dlp files.
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Important

Make sure to understand all the code you hand in, including what is copied from here. (The code for pretty printing
(typed) ASTs is an exception here; see the appendix below.)

6.2 The Abstract Syntax Tree (AST) of Dolphin (phase 2)

The AST that we use in this assignment is conceptually the same as before, except for one techical change – most of the
nodes of the AST now carry location information. Location information should be used in error reporting.
The OCaml types for the AST describing programs is given below:

(* -- Use this in your solution without modifications *)
module Loc = Location

type ident = Ident of {name : string; loc : Loc.location}

type typ =
| Int of {loc : Loc.location}
| Bool of {loc : Loc.location}

type binop =
| Plus of {loc : Loc.location}
| Minus of {loc : Loc.location}
| Mul of {loc : Loc.location}
| Div of {loc : Loc.location}
| Rem of {loc : Loc.location}
| Lt of {loc : Loc.location}
| Le of {loc : Loc.location}
| Gt of {loc : Loc.location}
| Ge of {loc : Loc.location}
| Lor of {loc : Loc.location}
| Land of {loc : Loc.location}
| Eq of {loc : Loc.location}
| NEq of {loc : Loc.location}

type unop =
| Neg of {loc : Loc.location}
| Lnot of {loc : Loc.location}

type expr =
| Integer of {int : int64; loc : Loc.location}
| Boolean of {bool : bool; loc : Loc.location}
| BinOp of {left : expr; op : binop; right : expr; loc : Loc.location}
| UnOp of {op : unop; operand : expr; loc : Loc.location}
| Lval of lval
| Assignment of {lvl : lval; rhs : expr; loc : Loc.location}
| Call of {fname : ident; args : expr list; loc : Loc.location}
and lval =
| Var of ident

type single_declaration = Declaration of {name : ident; tp : typ option; body : expr;␣
↪loc : Loc.location}

type declaration_block = DeclBlock of {declarations : single_declaration list; loc :␣
(continues on next page)
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↪Loc.location}

type for_init =
| FIExpr of expr
| FIDecl of declaration_block

type statement =
| VarDeclStm of declaration_block
| ExprStm of {expr : expr option; loc : Loc.location}
| IfThenElseStm of {cond : expr; thbr : statement; elbro : statement option; loc :␣

↪Loc.location}
| WhileStm of {cond : expr; body : statement; loc : Loc.location}
| ForStm of {init : for_init option; cond : expr option; update : expr option; body :␣

↪statement; loc : Loc.location}
| BreakStm of {loc : Loc.location}
| ContinueStm of {loc : Loc.location}
| CompoundStm of {stms : statement list; loc : Loc.location}
| ReturnStm of {ret : expr; loc : Loc.location}

type program = statement list

Action item

The AST declarations above should replace the contents of the module called Ast. Do not change the code above.

6.2.1 Location module

The AST module above uses the module Location below:

(* -- Use this in your solution without modifications *)
module PBox = PrintBox

type location = {start_pos : Lexing.position; end_pos : Lexing.position}

let make_location (startp, endp) = {start_pos = startp; end_pos = endp}

let dummy_loc = {start_pos = Lexing.dummy_pos; end_pos = Lexing.dummy_pos}

let location_style = PBox.Style.fg_color PBox.Style.Cyan

let location_to_tree ?(includefile = true) {start_pos; end_pos} =
if includefile then
if start_pos.pos_lnum = end_pos.pos_lnum then

PBox.sprintf_with_style location_style "\"%s\" @ %d:%d-%d"
start_pos.pos_fname start_pos.pos_lnum
(start_pos.pos_cnum - start_pos.pos_bol)
(end_pos.pos_cnum - end_pos.pos_bol)

else
PBox.sprintf_with_style location_style "\"%s\" @ %d:%d-%d:%d"

start_pos.pos_fname start_pos.pos_lnum
(start_pos.pos_cnum - start_pos.pos_bol)
end_pos.pos_lnum
(end_pos.pos_cnum - end_pos.pos_bol)

(continues on next page)
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else
if start_pos.pos_lnum = end_pos.pos_lnum then

PBox.sprintf_with_style location_style "@ %d:%d-%d"
start_pos.pos_lnum
(start_pos.pos_cnum - start_pos.pos_bol)
(end_pos.pos_cnum - end_pos.pos_bol)

else
PBox.sprintf_with_style location_style "@ %d:%d-%d:%d"

start_pos.pos_lnum
(start_pos.pos_cnum - start_pos.pos_bol)
end_pos.pos_lnum
(end_pos.pos_cnum - end_pos.pos_bol)

Action item

The definition of locations above should be placed in a module called Location. That is, the contents above should
be placed in a file called location. Do not change the code above.

Note

The typed AST module remains the same as in the previous assignment.

6.3 The syntax of Dolphin

You should by now have an intuitive understanding of the syntax and semantics of Dolphin. See Exercises for Week 7
for an overview. Below, we focus on the details of the syntax that are relevant for the implementaiton of the Dolphin
frontend.

6.3.1 Whitespace

Dolphin’s syntax recognizes, and ignores, the following (sequences of) characters as whitespace: \n (linefeed character,
i.e., Unix new line indicator), \r\n (carriage return, followed by linefeed, i.e., Windows new line indicator), tab, and
space. All whitespace characters are completely ignored in Dolphin. New line indicators also indicate the end of a
single-line comment.

Hint

When using ocamllex, the semntic action of recognizing new line indicators should invoke Lexing.new_line
function to increment line number in the lexer state to maintain consistent source location.
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6.3.2 Comments

In Dolphin, single-line comments start with //, and extend up to the end of the line. Multi-line (block) comments are
delimited by /* and */. Note: Dolphin supports nested multi-line comments. That is, both /* abc */ and /*/*
abc */*/ are valid comments.

6.3.3 Keywords

The keywords of Dolphin are as follows: true, false, nil, var, let, if, else, while, for, break, con-
tinue, return, int, byte, bool, string, void, record, new, length_of
Some of these keywords are not yet used in our implementation Dolphin. However, they should be recognized by the
lexer so as that identifiers are handled properly; see below.

6.3.4 Identifiers

An identifier is any string consisting of underscore, _, lowercse or capitl letters of English alphabet, and digits, 0, …, 9,
that does not start with a digit, and is not a Dolphin keyword.

6.3.5 Operators

The operators of the Dolphin language are as follows:

Opera-
tor

Description

+, -, *, /
, %

Arithmetic operators: addition, subtraction, unary negation, multiplication, division, remainder.

<, <=, >
>=

Relative comparison operators; these operators only apply to integers and strings.

==, != Equality comparison operator; these operators apply to any type, as long as the two sides are the same
type, and that type is not void.

||, &&, ! Logical operators on booleans: or, and, and not.
. Looking up fields in a record.
, See comma expressions explained below. (Note that , is also used as punctuation.)

Precedences and associativity

• Arithmetic operator precedences are as usual: + and - have the same precedence which is lower than that of *, /,
and %, which also have the same precedence. All these operators left-associative.

• The operator && has a higher priority than || and they are both left associative.
• Unary operations, - and !, have a higher precedence than binary operations.
• The comparison operators are non-associative.
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6.3.6 Punctuation

Punctuation
mark

Description

, Used for separating function arguments in a call, and separating variable declarations in a variable
declaration block.

{ and } Delimits compound statements. Also, they will later be used to delimit function body.
( and ) Used for grouping, e.g., overriding precedences. Also used for function calls (see below).

6.3.7 Literals

Dolphin supports integer and string literals.
• An integer literal is any number within the range −263 to 263 − 1. Integer literals out of this range are invalid.
• Boolean literals: keywords true and false.

6.3.8 Types

• Primitive types: int, bool.
• Void type: void. This type does not yet syntactically appear in our programs because it may only be used the
return type of a function in a function declaration, which we do not yet support in Dolphin.

6.3.9 L-values

An l-value, also written lvalue, is any value in the programming language that roughly-speaking corresponds to a memory
location. For the current subset of Dolphin, l-values can only be local variable names.

6.3.10 Expressions

Dolphin expressions are as follows:
• Integer and string literals.
• Boolean literals true and false.
• Binary operators applied to two expressions: e1 o e2 where e1 and e2 are two expressions and o is any binary
operator; see above for details of precedences.

• Unary operators applied to expressions: o e where o is a unary operator and e is an expression; see above for
details of precedences.

• L-values are also expressions; this corresponds to reading the location.
• Assignment: l = e where l is an l-value and e is an expression; this corresponds to writing the location.
• Function calls are written by writing the name of the function followed by its arguments passed in parentheses,
separated by a comma, e.g., func(a, b, 2 + 3). Function arguments are expressions.

• Parentheses can be used to group expressions: (e) is a valid expression whenever e is.
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6.3.11 Statements

• Expression statements: an expression statement is an assignment, a function call, or nothing, followed by a semi-
colon. That is, both func(2, 3); and ; are valid expression statements. However, 2 + 5; is not a valid
expression statement.

• Declaration blocks: A declaration block consists of a var keyword, followed by a sequence of declarations, sep-
arated with a comma, terminated by a semicolon. A declaration consists of an identifier and a type, separated
by a colon, and an initialization (= followed by an expression, which cannot itself be a comma operator; recall
parentheses for grouping). Finally, the type ascription is optional. That is, var x : int = 2;, var y =
false, w : int = 5;, var x = 3, z = true; are all valid declaration blocks.

• Conditional statement of the form if(cond) true_body else false_body where cond is an ex-
pression and true_body and false_body are both statements (see compound statements below). The else
false_body part of the statement is optional and may be omitted. Note: the parentheses around the condition
are part of the syntax of if statements.

• While loops of the form while(cond) body where cond is an expression and body is a statement (see
compound statements below). Note: the parentheses around the condition are part of the syntax of while loops.

• For loops of the form for(init; cond; update) body. The initialization part, initmay be a declaration
block (without a semicolon, as init and cond are already separated by a ; as part of the syntax of the for loop).
Both cond and update are expressions and body is a statement (see compound statements below). Note: the
parentheses around init; cond; update are part of the syntax of while loops. Each of the parts init,
cond, and update may be omitted. That is, for(;;);, for(; i < 10;);, for(var i : int =
12; i > 10;);, etc. are all valid for loops.

• Break statement: break; (Note: the ; ist part of the syntax of the statement.)
• Continue statement: continue; (Note: the ; ist part of the syntax of the statement.)
• Return statement of the form return res; where res is an expression.
• Compound statement (block of statements): a compound statement is a sequence of statements, one followed after
the other, surrounded in curly braces, e.g., {if (n > 0) {r = 10; return 1; } else continue;
{} }. A compound statement may appear at any point where a statement is expected, e.g., as the body of a loop,
or conditional, as a statement inside another compound statement, etc.

6.4 Lexer

6.4.1 Lexemes

The Dolphin language has the following lexeme kinds. (This is written in the language of Menhir.)

// end of file
%token EOF
// string literals
%token <string> STRING_LIT (* Strings quoted with "" *)
// integer literals
%token <int64> INT_LIT
// booleans
%token TRUE FALSE
// length operation; for arrays and strings
%token LENGTHOF
// arithmetic oprations
%token PLUS MINUS MUL DIV REM

(continues on next page)
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// comparison operators
%token LT LE GT GE
// logical operations
%token LOR LAND LNOT
// equality
%token EQ NEQ
// assignment
%token ASSIGN
// punctuation
%token QUESTIONMARK COLON COMMA SEMICOLON
// accessors
%token DOT LBRACKET RBRACKET
// braces
%token LBRACE RBRACE
// parentheses
%token LPAREN RPAREN
// identifiers
%token <string> IDENT
// keywords
%token NIL VAR LET IF ELSE WHILE FOR BREAK CONTINUE RETURN NEW
// types
%token INT BOOL STRING BYTE VOID RECORD

6.4.2 Lexer

Task 1: Implement lexical analysis using OCamllex

Implement lexical analysis for the present subset of Dolphin as described above, where the input is read from a file, using
`ocamllex``

Hint

Use a dummy parser for token generation.

6.5 Parser

Task 2: Implement the parser using Menhir parser generator

Implement the parser for the present subset of Dolphin as described above, using Menhir parser generator.
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6.6 Updated semantic analysis

Task 3: Update semantic analysis

Update your semantic analysis so that error reporting now includes the location information.

6.7 Consolidation

Task 4: Testing and consolidation

In this task, we put the previous tasks together and test our project in an end-to-end fashion.
1. Extend your function compile_prog from the previous phase to include the frontend. In other words, ensure

the following behavior for compile_prog.
• Given a path to a file with Dolphin source code, it runs the lexer. If there are no errors in lexing, com-
pile_prog runs the parser. If there are no errors in the parser, compile_prog runs the semantic
analysis (from here on, it is as just as in the previous assignment). In case of errors, they should be printed on
standard error output, and the program should exit with exit code 1. If there are no errors, compile_prog
proceeds to generate the LLVM translation. The result of the translation should be output on standard output,
and the program exits with exit code 0.

2. Port your earlier tests to source code. Add 10 new tests that negatively test your lexer and the parser. All the tests
should be included into your submission as individual .dlp files.

6.8 Appendix

Recall that you will need librariesprintbox andprintbox-text to use pretty printers below. These can be installed
using opam using the following command opam install printbox printbox-text

These pretty printers produce a so-called box which is the terminology that printbox uses to refer to formatted,
structured texts. A box ca be printed as follows:

PrintBox_text.output stdout (Pretty.program_to_tree prog)

This will print the AST of the program as a tree.

6.8.1 pretty printer for ASTs (module Pretty)

module PBox = PrintBox
open Ast

(* producing trees for pretty printing *)
let typ_style = PBox.Style.fg_color PBox.Style.Green
let ident_style = PBox.Style.fg_color PBox.Style.Yellow
let fieldname_style = ident_style
let keyword_style = PBox.Style.fg_color PBox.Style.Blue

let info_node_style = PBox.Style.fg_color PBox.Style.Cyan

(continues on next page)

6.6. Updated semantic analysis 59



AU Compilation, 2023

(continued from previous page)
let make_typ_line name = PBox.line_with_style typ_style name
let make_fieldname_line name = PBox.line_with_style fieldname_style name
let make_ident_line name = PBox.line_with_style ident_style name
let make_keyword_line name = PBox.line_with_style keyword_style name

let make_info_node_line info = PBox.line_with_style info_node_style info

let ident_to_tree (Ident {name; _}) = make_ident_line name

let typ_to_tree tp =
match tp with
| Bool _ -> make_typ_line "Bool"
| Int _ -> make_typ_line "Int"

let binop_to_tree op =
match op with
| Plus _ -> make_keyword_line "PLUS"
| Minus _ -> make_keyword_line "Minus"
| Mul _ -> make_keyword_line "Mul"
| Div _ -> make_keyword_line "Div"
| Rem _ -> make_keyword_line "Rem"
| Lt _ -> make_keyword_line "Lt"
| Le _ -> make_keyword_line "Le"
| Gt _ -> make_keyword_line "Gt"
| Ge _ -> make_keyword_line "Ge"
| Lor _ -> make_keyword_line "Lor"
| Land _ -> make_keyword_line "Land"
| Eq _ -> make_keyword_line "Eq"
| NEq _ -> make_keyword_line "NEq"

let unop_to_tree op =
match op with
| Neg _ -> make_keyword_line "Neg"
| Lnot _ -> make_keyword_line "Lnot"

let rec expr_to_tree e =
match e with
| Integer {int; _} -> PBox.hlist ~bars:false [make_info_node_line "IntLit("; PBox.

↪line (Int64.to_string int); make_info_node_line ")"]
| Boolean {bool; _} -> PBox.hlist ~bars:false [make_info_node_line "BooleanLit(";␣

↪make_keyword_line (if bool then "true" else "false"); make_info_node_line ")"]
| BinOp {left; op; right; _} -> PBox.tree (make_info_node_line "BinOp") [expr_to_

↪tree left; binop_to_tree op; expr_to_tree right]
| UnOp {op; operand; _} -> PBox.tree (make_info_node_line "UnOp") [unop_to_tree␣

↪op; expr_to_tree operand]
| Lval l -> PBox.tree (make_info_node_line "Lval") [lval_to_tree l]
| Assignment {lvl; rhs; _} -> PBox.tree (make_info_node_line "Assignment") [lval_

↪to_tree lvl; expr_to_tree rhs]
| Call {fname; args; _} ->

PBox.tree (make_info_node_line "Call")
[PBox.hlist ~bars:false [make_info_node_line "FunName: "; ident_to_tree␣

↪fname];
PBox.tree (make_info_node_line "Args") (List.map (fun e -> expr_to_tree e)␣

↪args)]
and lval_to_tree l =
match l with
| Var ident -> PBox.hlist ~bars:false [make_info_node_line "Var("; ident_to_tree␣

(continues on next page)
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↪ident; make_info_node_line ")"]

let single_declaration_to_tree (Declaration {name; tp; body; _}) =
PBox.tree (make_keyword_line "Declaration")
[PBox.hlist ~bars:false [make_info_node_line "Ident: "; ident_to_tree name];
PBox.hlist ~bars:false [make_info_node_line "Type: "; Option.fold ~none:PBox.

↪empty ~some:typ_to_tree tp];
PBox.hlist ~bars:false [make_info_node_line "Body: "; expr_to_tree body]]

let declaration_block_to_tree (DeclBlock {declarations; _}) =
PBox.tree (make_keyword_line "VarDecl") (List.map single_declaration_to_tree␣

↪declarations)

let for_init_to_tree = function
| FIDecl db -> PBox.hlist ~bars:false [PBox.line "ForInitDecl: "; declaration_block_

↪to_tree db]
| FIExpr e -> PBox.hlist ~bars:false [PBox.line "ForInitExpr: "; expr_to_tree e]

let rec statement_to_tree c =
match c with
| VarDeclStm db -> PBox.hlist ~bars:false [PBox.line "DeclStm: "; declaration_block_

↪to_tree db]
| ExprStm {expr; _} -> PBox.hlist ~bars:false [make_info_node_line "ExprStm: ";␣

↪Option.fold ~none:PBox.empty ~some:expr_to_tree expr]
| IfThenElseStm {cond; thbr; elbro; _} ->
PBox.tree (make_keyword_line "IfStm")

([PBox.hlist ~bars:false [make_info_node_line "Cond: "; expr_to_tree cond];␣
↪PBox.hlist ~bars:false [make_info_node_line "Then-Branch: "; statement_to_tree␣
↪thbr]] @

match elbro with None -> [] | Some elbr -> [PBox.hlist ~bars:false [make_info_
↪node_line "Else-Branch: "; statement_to_tree elbr]])
| WhileStm {cond; body; _} ->
PBox.tree (make_keyword_line "WhileStm")

[PBox.hlist ~bars:false [make_info_node_line "Cond: "; expr_to_tree cond];
PBox.hlist ~bars:false [make_info_node_line "Body: "; statement_to_tree body]]

| ForStm {init; cond; update; body; _} ->
PBox.tree (make_keyword_line "ForStm")

[PBox.hlist ~bars:false [make_info_node_line "Init: "; Option.fold ~none:PBox.
↪empty ~some:for_init_to_tree init];

PBox.hlist ~bars:false [make_info_node_line "Cond: "; Option.fold ~none:PBox.
↪empty ~some:expr_to_tree cond];

PBox.hlist ~bars:false [make_info_node_line "Update: "; Option.fold ~
↪none:PBox.empty ~some:expr_to_tree update];

PBox.hlist ~bars:false [make_info_node_line "Body: "; statement_to_tree body]]
| BreakStm _ -> make_keyword_line "BreakStm"
| ContinueStm _ -> make_keyword_line "ContinueStm"
| CompoundStm {stms; _} -> PBox.tree (make_info_node_line "CompoundStm") (statement_

↪seq_to_forest stms)
| ReturnStm {ret; _} -> PBox.hlist ~bars:false [make_keyword_line "ReturnValStm: ";␣

↪expr_to_tree ret]
and statement_seq_to_forest stms = List.map statement_to_tree stms

let program_to_tree prog =
PBox.tree (make_info_node_line "Program") (statement_seq_to_forest prog)
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6.8.2 pretty printer for ASTs (module TypedPretty)

The typed AST has not changed compared to the previous assignment. Hence, there is no need to update the Typed-
Pretty module.

6.8.3 C runtime

The C runtime we use has not changed compared to the previous assignment. See the corresponding description in the
previous assignment
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CHAPTER

SEVEN

DOLPHIN – PHASE 4

Attention

This is a group assignment. The workload is calibrated for a group of 3. Please also see the recommended workflow
section in the Appendix below.
In case of questions regarding ambiguity of what you should do, ask questions on the forum. If you are in doubt and
there is no enough time, use your best judgment and explain your reasoning in your report.

7.1 Assignment overview

This assignment builds on the previous three assignments: Phase 1, Phase 2, and Phase 3.
Phase 4 of Dolphin extends the language with two new features

1. Top-level functions, and
2. Comma expressions that are used to sequentialize expressions.

There are 5 tasks and no questions in this assignment. There is one glory task. Do it only if you have the time and feel
ambitious.

7.1.1 What you need to get started

• This assignment is a continuation of the previous assignment. You will need to edit the code from the previous
assignment.

• You will need to understand Menhir parser generator. See Menhir documentation.

7.1.2 What you need to hand in

Please hand in a .zip file containing the following.
1. A brief report documenting your solution. Acceptable report formats are .pdf, .rtf, and .md. For each task

and question, briefly (1 – 4 sentences) describe your implementation and answer. Write concisely.
2. All the source files needed to reproduce your solution. This also includes the C code provided. Please explain

in your report how the solution could be reproduced, e.g., calling make (if you have created a Makefile), the
command line to call clang, etc.

3. All the tests that you create (see Task 5) should be placed into a directory assignment-07-tests as individual
.dlp files.
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Important

Make sure to understand all the code you hand in.

7.2 Functions in Dolphin

Phase 4 Dolphin program consists of a list of one or more function declarations. The following applies to function
declarations.

1. The syntax for function declarations is <return-type> <function-name> ( <arguments> ) {
<function-body> }, where <arguments> is a list of zero or more comma-separated pairs of the form
<argument-name>: <argument-type>. Note that both the return type and the argument types must be
explicitly given. The following is an example of a declaration of function named f with return type int that takes
two arguments x and y, both of type int.

/* valid function declaration */
int f (x: int, y : int) {
return x+y;
}

2. The information about the function name, return type, and the argument number and types, is called function
signature.

3. Exactly one function in the program must have name main with the return type int, and no arguments.
4. Within a program, all function names must be unique.
5. Within a function, all argument names must be unique. For example, the following declaration is invalid

/* invalid function declaration
- duplicate argument x

*/
int f (x: int, x : int) {
return x;
}

6. Within a function, lexical scoping rules apply.
7. Arguments can be modified in the function as if they were local variables.

/* valid program */
int f (x:int) {

x = x * 10;
return x;

}

int main () {
var x:int = 1;
var y = f (x);
return x + y ; /* returns 11 */

}

8. Within a program, all functions are mutually recursive. For example, in the following program, function odd is
accessible from even despite their declaration order.
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/* even-odd example
- purpose: showcases mutual recursion
- this program is valid.
- returns 1

*/
int even (x:int) {
if (x == 0) {
return 0;

} else {
return odd (x - 1); /* odd is in scope */

}
}

int odd (x: int) {
if (x == 0) {
return 1;

} else {
return even (x - 1); /* even is in scope */

}
}

int main () {
return even (5);

}

9. If the return type of the function is not void, all paths in the program must return. See, for example, function
even above. The type of the return statements must agree with the return-type of the function. In void functions,
the return statement may be omitted.

10. Variables and function names share their namespace.

7.3 Comma expressions

Comma expressions are a form of expressions that are separated with a comma. The semantics is that of sequencing the
evaluation of the expressions. The expression to the left of the comma is evaluated before the expression to the right of
the comma. The result of the comma expression is that of the right subexpression. In other words, the result of the left-
subexpression is ignored. Comma expressions are useful for their side-effects, e.g., assignments or side-effects through
function calls. A common use case for comma expressions is in the update expression in for-loops.

int main () {
var _o = get_stdout ();
for ( var i: int = 0, j: int = 9

; i < 10
; i = i+1, j=j-1 /* obs: comma expression here */ )

{
output_string (int_to_string (i), _o);
output_string (" ", _o);
output_string (int_to_string (j), _o);
output_string ("\n", _o);

}
return 0;

}

The following applies to comma experissions.
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1. In particular, comma expressions are not valid expression statements. That is, as in the earlier phases, a valid
expression statement can either be an assignment, or a function call. In particular, the following program is invalid.

int main () {
var x = 0;
x = 1,x = 2; /* invalid expression statement */

/* the programmer should use semi-colon instead ;) */
return x;

}

The following program, however, is valid, because the comma expression appears as the right-hand side of the assignment
expression statement.

/* valid program */
int main () {

var x = 0;
x = (1,2); /* valid expression statement */
return x; /* returns 2 */

}

Note

C allows comma expression statements.

2. Comma expressions cannot appear as the top-level expression in the arguments to function calls.

7.4 Abstract syntax trees

Task 1: Design and implement an AST and Typed AST for Phase 4

The structure of the new AST should follow the idea that a program is as list of functions as described earlier in the
document.

7.5 Parser

Task 2: Extend your parser to support new language features

Note that lexer does not need to change.

7.6 Semantic analysis

In order to tackle mutual recursion, the type checking can be done with two passes over the AST.
1. In the first pass, check the validity of all function signatures only. If signatures of all functions are valid, gather

them into a function environment (similar to one for the build-in functions) that will be used in pass two.
2. In the second pass, check the validity of each function body using the environment created in the previous pass.
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Task 3: Extend your semantic analysis to support new language features

Extend the error module as needed.

7.7 Code generation

For code generation, we map each Dolphin function to an LLVM function. Each generated LLVM function has the same
number of arguments as the source Dolphin function that it corresponds to. Because arguments may be used as local
variables, the generated function needs to copy them from the LLVM to stack alloca-ted memory. For example, the
source level function int f (x:int) { x = x * 10; return x; } when translated to LLVM may look as
follows

define i64 @dolphin_fun_f (i64 %x_arg) {
; Allocate memory for copying the argument %x_arg.
%x_local_arg_copy = alloca i64
; Copy the argument
store i64 %x_arg, i64* %x_local_arg_copy
; Identifier %x_arg is not used from this point on.
; The rest of the function uses %x_local_arg_copy.
...

}

Task 4: Design and implement code generation for Phase 4

7.8 Testing and consolidation

Because of the changes in the syntax the tests from the previous phases will not immediately work. To port them, wrap
them as int main() { ... } functions. Additionally, create at least 10 new test programs that test the functionality
of the new phase.
All the tests should be included into your submission as .dlp files.
Task 5: Testing and consolidation

Port your old tests and create new ones as specified by the description above.

Task 6 (glory): Add support for tail call optimization

Full LLVM supports tail call annotations. See tail or musttail annotations on call instructions in LLVM documen-
tation. Add support for tail-call optimization.
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7.9 Appendix

7.9.1 C runtime

The C runtime we use has not changed compared to the previous assignment. See the corresponding description in the
previous assignment

7.9.2 Recommended workflow

1. Start by designing the AST and the Typed AST declarations for both functions and comma expressions.
2. Tackle function and comma expressions separately.
3. Start with functions, and proceed with modifying and debugging each phase that needs to be changed in this as-

signment. a. if you decide to split work among group members, each of the parser, semantic analysis, and code
generator, can be worked on independently, for as long as you adhere to the AST interfaces, and know how to put
together the individual pieces. b. if you decide to work on the assignment in the order of the phases, work from
the parser to semantic analysis to code generation.

4. Move onto comma expressions, and implement support for them in the parser, semantic analysis, and code gener-
ation, as in the previous step.
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CHAPTER

EIGHT

DOLPHIN – PHASE 5

Attention

This is a group assignment. The workload is calibrated for a group of 3. Please also see the recommended workflow
section in the Appendix below.
In case of questions regarding ambiguity of what you should do, ask questions on the forum. If you are in doubt and
there is no enough time, use your best judgment and explain your reasoning in your report.

8.1 Assignment overview

This assignment extends the language with three language features: records, arrays, and strings. For examples of programs
that use these features, we refer to the Exercises for week 7, and the example programs provided with this assignment.
There are 6 tasks and no questions in this assignment. There is one glory task. Do it only if you have the time and feel
ambitious.

8.1.1 What you need to get started

• This assignment is a continuation of the previous assignment. You will need to edit the code from the previous
assignment.

• The following features of LLVM that we have not previously used are relevant for this assignment
– LLVM named type definitions and agggregate types.
– LLVM global identifiers and string literals.
– LLVM cast operations such as bitcast and ptrtoint.
– LLVM’s getelemntptr instruction. See our reference material on GEP and Exercises for week 11.

• You need to understand OCamllex lexer generator. Refer to OCamllex documentation for details.
• You need to understand Menhir parser generator. Refer to Menhir documentation for details.
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8.1.2 What you need to hand in

Please hand in a .zip file containing the following.
1. A brief report documenting your solution. Acceptable report formats are .pdf, .rtf, and .md. For each task

and question, briefly (1 – 4 sentences) describe your implementation and answer. Write concisely.
2. All the source files needed to reproduce your solution. This also includes the C code provided. Please explain

in your report how the solution could be reproduced, e.g., calling make (if you have created a Makefile), the
command line to call clang, etc.

3. All the tests that you create (see Task 6) should be placed into a directory assignment-08-tests as individual
.dlp files.

Important

Make sure to understand all the code you hand in.

8.2 Records in Dolphin

Records in Dolphin are similar to structs in C (or Java classes without methods). They are the only form of user-defined
data types, allow the grouping of data of different types under a single entity. Record types are declared using record
keyword, which has the following syntax:

record <record-type-name> {
<field-name-1>:<type-1>;
<field-name-2>:<type-2>;
...
<field-name-n>:<type-n>;

}

For example,
record Tuple { x: int; y : int; }. A record type is referred to in the program using its name, for
example via var x:MyRec.
New records are declared using the syntax

new <record-type-name> {
<field-name-1> = <field-init-expression-1>;
<field-name-2> = <field-init-expression-2>;
...
<field-name-n> = <field-init-expression-n>;

}

where each <field-init-expressions> must have the type corresponding to the field it initializes.
Given an expression e of record type, its field f is accessed using the dot notation: e.f. The keyword nil denotes an
invalid record of any record type, like null in Java; attempting to access one of its fields should be reported as an error
at runtime. Below is an example of a simple program with records:

record Tuple { x: int; y : int ; }

int main () {
var a:Tuple = new Tuple { x = 0; y = 1; };

(continues on next page)
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(continued from previous page)
var b:Tuple = nil;
return a.x; /* dot notation to refer to the field `x` of variable `a` */

}

The following applies to records and their use in Dolphin programs.
1. All records are declared at the top-level. A Dolphin program is a collection of function and record declarations.
2. All records are mutually recursive.
3. Within a program, all record names must be unique.
4. The following record names are reserved for the standard library. They may not be used in the declarations of the

user-defined records: stream, socket, socket_address, ip_version, accepted_connection,
udp_recvfrom_result, and connection_type.

5. The only way to obtain non-nil values for the reserved records is through standard library. In particular, reserved
records cannot be created in the program using the new keyword.

6. All fields within the record must be unique.
7. The number of fields may be zero.
8. At record creation, the fields may appear in any order. For example, var a:Tuple = new Tuple { y =

1; x = 0; }; is a valid record creation.
9. All fields must be initialized. If a field initialization is missing, an error must be reported.
10. The only binary operations allowed on the records are equalty and inequality. Records are compared by reference.

The following example program illustrates record equality.

/* valid program; returns 1 */
record Tuple { x: int; y : int ; }

int main () {
var a:Tuple = new Tuple { x = 0; y = 1;};
var b:Tuple = new Tuple { x = 0; y = 1;};
var c = a;
if (b == c) {

return 0;
}
if (a == c) {

return 1;
}
return 2;

}

11. If one of the operands of equality (or inequality) is a record, the other operand must be either (a) another record
of the same type, or (b) nil.

Note

This particular design of record comparison is compatible with mainstream languages such as Java and C. This also
means that other ways of definging equality, i.e., structurally, have to be implemented in code, e.g., by writing a
function bool tuple_eq (Tuple t1, Tuple t2).
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8.3 Arrays in Dolphin

Arrays in Dolphin are similar to arrays in languages such as Java or C. They hold a fixed number of values of a single
type. The type of the array is denoted using the syntax [<element-type>], e.g., [int] is the type of array of
integers. Arrays are initialized using the syntax new <element-type> [<length-expression>], where
<length-expression> must evaluate to an integer. For example, var x = new int[1+3] initializes x to be
an array of 4 elements. The length of the arrays is, in general, not known at compile time. Arrays are indexed using the
bracket notation <variable-name> [ <index-expression> ].
The following applies to arrays:

1. All array accesses – reading and writing – are bounds-checked.
2. Similar to records, the only allowed binary operations on arrays are equality and inequality. Similar to records, the

equality checks are done by reference.
3. The number of array elements must be non-negative.
4. After array creation, the length of the array cannot change at runtime.
5. Array length is accessed using length_of (<expression>), where <expression> must evaluate to an

array, and length_of is a keyword.

8.4 Strings in Dolphin

In Dolphin, strings are a built-in type. They can be created in one of the following ways:
• using string literals in the program source, e.g,. "Hello"
• using Dolphin standard library functions, e.g., string_concat ("Hello", "World") concatenates two
strings.

The following applies to strings:
1. The binary operations on strings are equality, inequality, and string comparison. Unlike arrays and records, strings

are compared by value.
2. String literals may include escape characters: for example ‘\n’ stands for a newline. Dolphin follows OCaml’s lexical

convention for representing escape sequences.
3. String literals may span over several lines.
4. The length of a string can be obtained using length_of keyword.

The following example program illustrates some string operations:

int main() {
var x = "hello

world";
var y = "hello\nworld";
if (x == y) {

return 0;
}
return length_of(x);

}
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8.5 Abstract Syntax Tree

Task 1: Design and implement an AST and Typed AST for Phase 5.

As you work on this task, take the following aspects into account.

8.5.1 Type representation

We suggest the following OCaml data structures for representing strings, arrays, and records.

(* suggested code snippet to incorporate into your AST *)
type recordname = RecordName of {name : string; loc : Loc.location}
type fieldname = FieldName of {name : string; loc : Loc.location}
type ident = Ident of {name : string; loc : Loc.location}

type typ =
| ... (* placeholder for previous constructors *)
| Str of {loc : Loc.location}
| Array of {typ : typ; loc : Loc.location}
| Record of {recordname : recordname}

8.5.2 Program structure

The structure of the new AST should follow the idea that a program is a list of functions or record declarations. You
should create a way of representing record declarations in the AST.

8.5.3 Expressions

To accommodate the new features, we suggest to extend your expr type by adding constructors for the following:
• record creation
• array creation
• nil expression
• string values
• the length_of keyword

8.5.4 Extending Lvals

In programming languages, lvals, correspond to the program entities that may appear to the left of the assignment state-
ment, hence the use of the letter l in the name. In previous phases, lvals were only identifiers. With the addition of records
and arrays, the space of lvals is now richer. It includes indexing into array or a record field, as well as their combination,
e.g., f().x[1+g()].y[2].z.
With regards to extending the AST to support lvals, we suggest the following.
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type expr =
...
and lval =
| Var of ident
| Idx of { arr : expr

; index : expr
; loc : Loc.location
}

| Fld of { rcrd : expr
; field : fieldname (* see declaration of fieldname earlier *)
; loc : Loc.location
}

8.6 Lexer

Task 2: Extend the lexer to support the new language features

As you work on this task, recognize what new tokens need to be added to the language. For full support of strings, you
may need to add a new lexer rule, in order to properly treat escape characters and strings spanning multiple lines. Note
that because Dolphin follows OCaml’s specification of escape characters, we can use the OCaml standard library function
Scanf.unescape to recognize escape characters.

8.7 Parser

Task 3: Extend the parser to support the new language features

To score full points on this task, your parser must not have any shift/reduce or reduce/reduce conflicts. As you work on
this task, pay attention to proper parsing of lvals in your parser. Consult the examples and the specification earlier in this
section regarding the correct syntax, i.e., the use of semicolons when delimiting fields in records - and write your own
tests based on the specification.

8.8 Semantic analysis

Task 4: Extend the semantic analysis to support the new language features

8.8.1 Record declarations

In the implementation of semantic analysis, pay special attention to the mutual recursion of records. Similarly to the
mutual recursion of functions, use two passes over the record declarations.

1. Identify all record names, and collect them into a data-structure (a list or a set).
2. Check each record individually, ensuring that the user-defined fields correspond to valid types.
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8.8.2 Checking functions

Once the record declarations are checked, the information about all the records can be collected into an environment
where their names map to their types. This environment should also include the reserved records. Use this resulting
environment when type checking function signatures and bodies.

8.9 Code generation

Task 5: Extend the code generation to support the new language features

We start off by going over the runtime and standard library integration.

8.9.1 Runtime and standard library integration

Before you proceed with code generation, it is necessary to port your project to the new runtime. The runtime and the
standard library are split across several modules, because there is a qualitative distinction between the runtime and the
standard library (unlike in the earlier phases), which we explain below. We have the following files.

1. runtime.c contains the extended core runtime functionality, for operations such as record and array allocation,
string equality, etc. What makes these functions part of the runtime (as opposed to the standand library) is that
none of these C functions are exposed to the programmer. It is the compiler’s code generator that embeds calls to
them, based on the (typed) AST.

2. stdlib.c contains Dolphin standard library that includes functions that are user-visible. These include a number
of “everyday” functionality, such as functions for string concatenation, printing a string, etc. This is a relatively large
module.

3. runtime.h is a header file that is included from stdlib.c.
These files are to be downloaded from Brightpsace.

Representation of reserved records and strings

We map reserved records, e.g., stream to empty LLVM records. This is sufficient because When passing these ar-
guments back and forth to the runtime, we will only use pointers to these records. This also means that we could have
represented the reserved records as generic pointers, i.e., i8*; but the empty record approach has an added benefit of
tagging the intended use of the signature functions (though the typing guarantees are weak because they can be overcome
via casts).
Because strings are represented as LLVM structs, we also need to include a definition of the string type.

Declaring external functions and types

Because your generated LLVM file uses the external functionality provided by the runtime and standard library, it needs
to include @declare instructions to let LLVM know of the the function signatures and that they are implemented
elsewhere.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The following declarations should be included in the generated LLVM file ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(continues on next page)
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(continued from previous page)
; LLVM struct corresponding to the reserved stream type
%dolphin_record_stream = type { }

; LLVM struct correpsonding to the string representation
%string_type = type {i64, i8* }

@dolphin_rc_empty_string = external global %string_type

; signatures for the runtime functions
; -- not user visible --
declare i64 @compare_strings(%string_type*, %string_type*)
declare i8* @allocate_record(i32)
declare i8* @raw_allocate_on_heap(i32)
declare i8* @allocate_array(i32, i64, i8*)
declare void @report_error_array_index_out_of_bounds()
declare void @report_error_nil_access()
declare void @report_error_division_by_zero()
declare i64 @string_length(%string_type*)

; signatures for the core standard library
; -- these are user visible --
declare %string_type* @bytes_array_to_string(i8*)
declare i8* @string_to_bytes_array(%string_type*)
declare i64 @byte_to_int_unsigned(i8)
declare i64 @byte_to_int_signed(i8)
declare i8 @int_to_byte_unsigned(i64)
declare i8 @int_to_byte_signed(i64)
declare i64 @ascii_ord(%string_type*)
declare %string_type* @ascii_chr(i64)
declare %string_type* @string_concat(%string_type*, %string_type*)
declare %string_type* @substring(%string_type*, i64, i64)
declare %string_type* @int_to_string(i64)
declare i64 @string_to_int(%string_type*)
declare i64 @input_byte(%dolphin_record_stream*)
declare i1 @output_byte(i8, %dolphin_record_stream*)
declare i8* @input_bytes_array(i64, %dolphin_record_stream*)
declare void @output_bytes_array(i8*, %dolphin_record_stream*)
declare void @output_string(%string_type*, %dolphin_record_stream*)
declare i1 @seek_in_file(i64, i1, %dolphin_record_stream*)
declare i64 @pos_in_file(%dolphin_record_stream*)
declare i1 @close_file(%dolphin_record_stream*)
declare i1 @flush_file(%dolphin_record_stream*)
declare i1 @error_in_file(%dolphin_record_stream*)
declare i1 @end_of_file(%dolphin_record_stream*)
declare i64 @get_eof()
declare %dolphin_record_stream* @open_file(%string_type*, %string_type*)
declare %dolphin_record_stream* @get_stdin()
declare %dolphin_record_stream* @get_stderr()
declare %dolphin_record_stream* @get_stdout()
declare %string_type** @get_cmd_args()
declare void @exit(i64)

; array length utility functions
define i32 @dolphin_rc_compute_array_length_size () {
%size_ptr = getelementptr i64, i64* null, i64 1
%size = ptrtoint i64* %size_ptr to i32

(continues on next page)
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(continued from previous page)
ret i32 %size

}

define void @dolphin_rc_set_array_length (i64* %array, i64 %size) {
%len_ptr = getelementptr i64, i64* %array, i64 -1
store i64 %size, i64* %len_ptr
ret void

}

define i64 @dolphin_rc_get_array_length (i64* %array) {
%len_ptr = getelementptr i64, i64* %array, i64 -1
%size= load i64, i64* %len_ptr
ret i64 %size

}

8.9.2 Records

Record representation

We represent records using LLVM structs. The translation is quite straightforward and is one-to-one. A Dolphin record
with n fields is translated to an LLVM struct with n fields. The types of the LLVM fields should correspond to the Dolphin
types. For example, the Dolphin declaration of two types.

record T1 { x: int; t2 : T2;}
record T2 { y: int; t1 : T1;}

is translated to LLVM as follows

%dlp_rec_T2 = type { i64, %dlp_rec_T1* }
%dlp_rec_T1 = type { i64, %dlp_rec_T2* }

Note that the choice of the naming %dlp_rec_T2 here is compiler-chosen; you may chose a different naming conven-
tion. What is important is that the code generation phase of the compiler is aware of the mapping between the source
and the target types, and that of course the generated LLVM code is valid.

Nil representation

Nil record values can be represented as null in LLVM.

Record initialization

Allocation of a record is done through the runtime function allocate_record. This function takes an argument
corresponding to the size of the record. Because the size depends on LLVM, we need to implement an architecture-
independent way of obtaining the size information. This is accomplished using the GEP size hack[Lat05] as illustrated
below. To actually save the payload of the record, we further need to use a combination of GEP and store instructions.
For example, consider the following record creation

var t2 = new T2{y = 10; t1 = t1; } /* for some previously computed value `t1` */

The LLVM code for it can look as follows (we abbreviate getelementptr as <GEP> for brevity in the listing).
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In this example, we need to use bitcast to cast the generic pointer i8* returned by the runtime allocation function
into the LLVM type. Note that casts typically are erased in the LLVM to x86 translation; in other words, they have no
performance overhead.

; Suppose %var_t1 and %var_t2 are the identifiers
; that we alloca-ed for the source level t1, t2

; GEP size hack
%size_ptr = getelementptr %dlp_rec_T2, %dlp_rec_T2* null, i32 1
; Cast ptr to integer
%size = ptrtoint %dlp_rec_T2* %size_ptr to i32
; Call into the runtime for allocation
%ptr_rt = call i8* @allocate_record (i32 %size)

; Turn generic pointer into a more specific one, so we can use GEP
%t2_ptr = bitcast i8* %ptr_rt to %dlp_record_T2*

; Access field y of the struct
%ptr_field_y_of_var_t2 = getelementptr %dlp_rec_T2, %dlp_rec_T2* %t2_ptr, i32 0, i32 0
; Save 10 in the field y
store i64 10, i64* %ptr_field_y_of_var_t2

; Read from %var_t1
%ptr_t1 = load %dlp_rec_T1*, %dlp_rec_T1** %var_t1
; Access field t1 of the struct
%ptr_field_t1_of_var_t2 = getelementptr %dlp_rec_T2, %dlp_rec_T2* %t2_ptr, i32 0, i32␣

↪1
; Save in the field t1
store %dlp_rec_T1* %ptr_t1, %dlp_rec_T1** %ptr_field_t1_of_var_t2

; Save in %var_t2
store %dlp_rec_T2* %t2_ptr %dlp_rec_T2** %var_t2

Record access

To access the record, we need to use the GEP instruction similarly to how it is used in the initialization above.

8.9.3 Array translation

Array representation

An array is represented as a contiguous block of memory, with the metadata information about the length stored in
memory before the content.

┌─────────┬─────────────────────────────────────────────────┐
│ Length │ Array content │
└─────────┴─────────────────────────────────────────────────┘
▲ ▲
│ │
│ The pointer to the start of the array
│
│
Length is accessed by casting the pointer to the start of the
array to i64* and using GEP with index -1
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Array initialization

Array initialization takes place via function allocate_array in the runtime. Note that the last argument to that
function needs to include the pointer to the initialization value.
To correctly access the array length, our runtime depends on three functions to be generated by our compiler. These
functions are declared in the header file dolphin_rc.h.

/* dolphin_rc.h - include this file in your project */
#include <stdint.h>

extern int32_t dolphin_rc_compute_array_length_size();
extern void dolphin_rc_set_array_length(void *, int64_t);
extern int64_t dolphin_rc_get_array_length(void *);

Array access

To access the i-th element of the array (counting from zero), we can use GEP instruction with i as the first index.

8.9.4 String translation

Runtime representation

Strings are represented at runtime as C structs of the type.

struct string { int64_t len; char * contents; };

String literals in LLVM code.

String literals are represented in the source as global identifiers.
A string literal is represented as an LLVM global of LLVM array type. Recall that LLVM arrays have static length (and
are only used here to represent string literals). Consider the following source program and the associated translation.

int main () {
var x = "Hello World\n";
output_string (x, get_stdout());
return 0;

}

This corresponding simplified LLVM code can look as follows

;; external functions and reserved type declarations omitted

@str_lit_struct = global { i64, [12 x i8]* } {i64 12, [12 x i8]* @str_lit}
@str_lit = global [12 x i8] c"Hello World\0A"

define i64 @dolphin_fun_main () {
%var_x = alloca %string_type*
%str_cast = bitcast { i64, [12 x i8]* }* @str_lit_struct to %string_type*
store %string_type* %str_cast, %string_type** %var_x
%tmp_1 = load %string_type*, %string_type** %var_x
%tmp_2 = call %dolphin_record_stream* @get_stdout ()

(continues on next page)
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(continued from previous page)
call void @output_string (%string_type* %tmp_1, %dolphin_record_stream* %tmp_2)
ret i64 0

}

8.9.5 Comparing strings

String comparison is to be translated to calls to the runtime function compare_strings. This function compares two
strings lexicographically. It returns 0 if the strings are identical, -1 if the first strings is less than the second one, and 1
if the first argument is greater than the second one.

8.10 Consolidation and testing

Task 6: Put all the phases together and test your functionality

• Add at least 10 new tests that check for the negative behavior in the semantic analysis and the frontend that you
have implemented.

• Add at least 10 new tests that check for the positive behavior of the frontend.
• Run your compiler on the provided example programs and check their behavior.

Describe why your tests are useful.

8.10.1 Glory task

Task 7 (glory): Add support for the full standard library

Full standard library includes networking API. This will allow you to run the HTTP server example. See full standard
library signature in the Appendix.

8.11 Appendix

8.11.1 Example programs

We provide a handful of example programs together with their expected output. Download them from brightspace.

8.11.2 Recommended workflow

As a general rule of thumb, work your way very slowly through the assignment, especially because as you add code
generation, the size of the generated LLVM programs will grow substantially, and it is crucial that you understand it.
Read and test the LLVM code you generate as you incrementally add new aspects of code generation. For example,
test record creation immediately after you implement it, even before you complete other aspects of records, i.e., record
lookups.
At a high level, we suggest the following order for the assignment:

80 Chapter 8. Dolphin – Phase 5



AU Compilation, 2023

1. Implement the most rudimentary support for strings in the frontend. In particular, for lexing, ignore escape char-
acters and newlines.

2. Add runtime integration and code generation for strings. At this point, you should be able to compile and run
something as simple as

int main () {
output_string ("Hello World!", get_stdout());
return 0;

}

3. Add support for records through all the compiler phases.
4. Add support for arrays through all the compiler phases. Get the core functionality of arrays (creation, lookup,

update) working first, and add bounds-checking afterwards.
5. Add support for lexing of complex strings, including escape characters and newlines.
6. Consolidate.

8.11.3 Full standard library signature

%dolphin_record_udp_recvfrom_result = type { i8*, %dolphin_record_socket_address* }
%dolphin_record_accepted_connection = type { %dolphin_record_socket*, %dolphin_record_

↪socket_address* }
%dolphin_record_socket = type { }
%dolphin_record_socket_address = type { }
%dolphin_record_ip_address = type { }
%dolphin_record_ip_version = type { }
%dolphin_record_connection_type = type { }
%dolphin_record_stream = type { }
%string_type = type {i64, i8* }

@dolphin_rc_empty_string = external global %string_type

declare i64 @compare_strings(%string_type*, %string_type*)
declare i8* @allocate_record(i32)
declare i8* @raw_allocate_on_heap(i32)
declare i8* @allocate_array(i32, i64, i8*)
declare void @report_error_array_index_out_of_bounds()
declare void @report_error_nil_access()
declare void @report_error_division_by_zero()
declare %dolphin_record_udp_recvfrom_result* @socket_recvfrom_udp(%dolphin_record_

↪socket*)
declare i64 @socket_sendto_udp(%dolphin_record_socket*, %dolphin_record_socket_

↪address*, i8*)
declare i1 @socket_close(%dolphin_record_socket*)
declare i1 @socket_activate_udp(%dolphin_record_socket*)
declare i1 @socket_connect(%dolphin_record_socket*, %dolphin_record_socket_address*)
declare %dolphin_record_accepted_connection* @socket_accept(%dolphin_record_socket*)
declare i1 @socket_listen(%dolphin_record_socket*, i64)
declare i1 @socket_bind(%dolphin_record_socket*, %dolphin_record_socket_address*)
declare i64 @get_port_of_socket_address(%dolphin_record_socket_address*)
declare %dolphin_record_ip_address* @get_ip_address_of_socket_address(%dolphin_record_

↪socket_address*)
declare %dolphin_record_socket_address* @create_socket_address(%dolphin_record_ip_

↪address*, i64)

(continues on next page)
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(continued from previous page)
declare %string_type* @ip_address_to_string(%dolphin_record_ip_address*)
declare %dolphin_record_ip_address* @string_to_ip_address(%dolphin_record_ip_version*,

↪ %string_type*)
declare %dolphin_record_stream* @socket_get_output_stream(%dolphin_record_socket*)
declare %dolphin_record_stream* @socket_get_input_stream(%dolphin_record_socket*)
declare %dolphin_record_socket* @create_socket(%dolphin_record_ip_version*, %dolphin_

↪record_connection_type*)
declare %dolphin_record_ip_address* @get_ipv6_address_any()
declare %dolphin_record_ip_address* @get_ipv4_address_any()
declare %dolphin_record_ip_version* @get_ipv6()
declare %dolphin_record_ip_version* @get_ipv4()
declare %dolphin_record_connection_type* @get_tcp_connection_type()
declare %dolphin_record_connection_type* @get_udp_connection_type()
declare i64 @string_length(%string_type*)
declare %string_type* @bytes_array_to_string(i8*)
declare i8* @string_to_bytes_array(%string_type*)
declare i64 @byte_to_int_unsigned(i8)
declare i64 @byte_to_int_signed(i8)
declare i8 @int_to_byte_unsigned(i64)
declare i8 @int_to_byte_signed(i64)
declare i64 @ascii_ord(%string_type*)
declare %string_type* @ascii_chr(i64)
declare %string_type* @string_concat(%string_type*, %string_type*)
declare %string_type* @substring(%string_type*, i64, i64)
declare %string_type* @int_to_string(i64)
declare i64 @string_to_int(%string_type*)
declare i64 @input_byte(%dolphin_record_stream*)
declare i1 @output_byte(i8, %dolphin_record_stream*)
declare i8* @input_bytes_array(i64, %dolphin_record_stream*)
declare void @output_bytes_array(i8*, %dolphin_record_stream*)
declare void @output_string(%string_type*, %dolphin_record_stream*)
declare i1 @seek_in_file(i64, i1, %dolphin_record_stream*)
declare i64 @pos_in_file(%dolphin_record_stream*)
declare i1 @close_file(%dolphin_record_stream*)
declare i1 @flush_file(%dolphin_record_stream*)
declare i1 @error_in_file(%dolphin_record_stream*)
declare i1 @end_of_file(%dolphin_record_stream*)
declare i64 @get_eof()
declare %dolphin_record_stream* @open_file(%string_type*, %string_type*)
declare %dolphin_record_stream* @get_stdin()
declare %dolphin_record_stream* @get_stderr()
declare %dolphin_record_stream* @get_stdout()
declare %string_type** @get_cmd_args()
declare void @exit(i64)

define i32 @dolphin_rc_compute_array_length_size () {
%size_of_length_addr$0 = getelementptr i64, i64* null, i64 1
%size_of_length$1 = ptrtoint i64* %size_of_length_addr$0 to i32
ret i32 %size_of_length$1

}

define void @dolphin_rc_set_array_length (i64* %array, i64 %size) {
%array_length$2 = getelementptr i64, i64* %array, i64 -1
store i64 %size, i64* %array_length$2
ret void

}

(continues on next page)
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define i64 @dolphin_rc_get_array_length (i64* %array) {
%array_length$3 = getelementptr i64, i64* %array, i64 -1
%size$4 = load i64, i64* %array_length$3
ret i64 %size$4

}
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CHAPTER

NINE

EXERCISES FOR WEEK 2

In compiler implementation, it is often desired to inspect the data structers we work with. A common scenario includes
working with an AST that we either process or synthesize, where we want to understand its shape. The necessary device
in this case is visualization of our data structures. Often times, visualization techniques we use are very rudimentary, yet
it helps to be familiar with them, which is the purpose of this exercise.
We will explore two visualization approaches. In both cases, we will use the AST for arithmetic expressions from As-
signment 01.

(* Defining the type for binary operations *)
type binop = Add | Sub | Mul | Div

(* Defining the type for arithmetic expressions *)
type expr

= Int of int (* Integer constant *)
| BinOp of binop * expr * expr (* Binary operation *)

9.1 Formatting output to console

Our first approach is to print the tree on console using indentation. Write function print_tree that when called would
produce the output similar to Unix tree utility. For example, print_tree (BinOp (Add, Int 1, BinOp
(Mul, Int 2, Int 3))) would generate the output

BinOp Add
├── Int 1
└── BinOp Mul

├── Int 2
└── Int 3

Hint: if you are struggling with getting the ASCII connectives right, start with a simpler version that just uses the inden-
tation

BinOp Add
Int 1
BinOp Mul

Int 2
Int 3
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9.2 Formatting to graphviz

Another popular way of visualizing intermediate representations is to synthesize a .dot file to be used with Graphviz
toolkit. Write a function print_aexp_to_dot that generates a .dot formatted output corresponding to the input
expression. For example, for the expression above it can generate something like this

digraph AST {
0 [label="Add"];
1 [label="Int 1"];
2 [label="Mul"];
3 [label="Int 2"];
4 [label="Int 3"];

0 -> 1;
0 -> 2;
2 -> 3;
2 -> 4;

}

Note that while the full spec of .dot format is quite extensive, it is sufficient to just the use the basic features, such as
declaration of nodes and connectives, as in the example above.
If this output is saved to a file, e.g., aexp.dot we can invoke the dot command (which is available as part of graphviz
package and should be already installed in the dev container) to get an image file, e.g.,

dot -Tpng aexp.dot -o aexp.png

will generate an image as follows
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TEN

EXERCISES FOR WEEK 3

10.1 Exercise overview

In compiler implementation, an essential data structure is that of associative maps, also often referred to as environments.
For example, type checking uses environments for associating variables with types, code generation uses environments
for mapping variables to target registers, and optimization phases use environments extensively, e.g., for tracking uses and
definitions of variables. Note that while it is usual that keys in the environments are identifiers, (that is, variable names),
that is not always the case. For example, in common subexpression elimination optimization that optimizes x = a +
b; y = a + b to x = a + b; y = x, the keys are expressions such as a + b.
The exercises below explore four different approaches for implementing environments. For simplicity, we consider envi-
romnents where keys are strings and values are integers. The examples make use of OCaml’s module system. This fulfills
the secondary goal of these exercises to familiarize oneself with OCaml modules. To read up on OCaml module system,
see Chapter 5 of the OCaml book.
The four approaches for implementing environments we consider are

1. List-based environments.
2. Functional environments.
3. Map-based environments.
4. Map-based environments with integer hashtable.

10.2 Relevant reading

For the implementation of approach 4, the relevant reading is Section 5.1 of Andrew Appel’s book Modern Compiler
Implementation in ML.

10.3 Environment signature

We start off by defining the type of our keys, the NotFound exception, and a module signature that will be shared by all
four implementations

type value = int
exception NotFound (* we throw this exception when the key is not found *)

module type EnvSig = sig
type env (* abstract environment type *)

(continues on next page)
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(continued from previous page)
type symbol (* abstract symbol type *)
val empty_env : env (* create an empty environment *)
val insert : env -> symbol -> value -> env (* insert; returns updated environment␣

↪*)
val lookup : env -> symbol -> value (* lookup; returns the value or raises␣

↪NotFound *)
val symbol : string -> symbol (* create a symbol value from string *)
val approach_name: string (* the name of our approach, for benchmarking later *)

end

Most of the signature is standard, except perhaps the symbol type and the symbol function. They introduce a layer of
indirection. Instead of inserting a key-value pair directly into the environment, we first convert the key into a so-called
symbol value (that has type symbol) which we pass over as the argument to insert. This layer of indirection is needed
by the last approach, which promises a bit of extra performance. We added it to the signature in order to parametrize the
benchmarking; but everywhere except the last implementation, the symbol function is implemented as identity function
fun x -> x, and the symbol type is a synonym to string.
For example, if E is a module implementing our environments, we can write a function such as

let example () =
let open E in
let e0 = empty_env in
let x_sym = symbol "x" in
let e1 = insert e0 x_sym 5 in
let result = lookup e1 x_sym in
Printf.printf "%d\n" result (* prints 5 *)

10.4 List-based environments

Our first implementation uses associative lists as environments. See the following start of an implementation. Two
functions are left to you as an exercise – they are the ones raising the TODO exception.

(* replace the code that raises TODO with your implementation *)
exception TODO

(* Approach 1 - list based environments *)
module ListEnv : EnvSig = struct

let approach_name = "List-based environments"
type env = (string * value) list
type symbol = string
let symbol = fun x -> x
let empty_env = []
let insert e k v = raise TODO
let lookup e k = raise TODO

end
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10.4.1 Testing your module

When you complete the module you can start testing it. For example, you can repurpose the example question from
above where you replace E with ListEnv. Do create your own examples to see that this module works as expected.
This approach to testing applies to all of the remaining implementations.

10.5 Functional environments

The following approach uses functions as environments. It is closer in spirit to the mathematical notion of an associative
map being a function from keys to values. We have now included the implementation of insert, and we ask you to
only implement the lookup function here.

(* Approach 2 - functional environments *)

module FunEnv : EnvSig = struct
let approach_name = "Functional environments"
type env = string -> value
type symbol = string
let symbol = fun x -> x
let empty_env = fun _ -> raise NotFound
let insert e k v = fun x -> if x = k then v else e x
let lookup e k = raise TODO

end

10.6 Map-based environments

Next implementation is a thin wrapper around the OCaml’s Map standard library. This way of wrapping allows us to see
how this implementation relates to the other approaches.

(* Approach 3 - Map-based environments *)
module MapEnv : EnvSig = struct

let approach_name = "Map-based environments"
module StringMap = Map.Make (String) (* using Map functor; do read up on this !*)
type symbol = string
let symbol = fun x-> x

type env = value StringMap.t
let empty_env = StringMap.empty
let lookup e k = raise TODO
let insert e k v = raise TODO

end
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10.7 Map-based environments with int hashtables

The following implementation is based on the symbol tables as described in Modern Compiler Implementation in ML,
Chapter 5.1.

(* Approach 4 - Map-based environments with int hashtable;
based on MCIML, Chapter 5.1 *)

module MapHashEnv : EnvSig = struct
let approach_name = "Map-based envs with int H/T"
let nextsym = ref 0
type symbol = string * int
module H = Hashtbl
let hashtbl: (string, int) H.t = H.create 2048 (* some init size *)
module SymbolMap =

Map.Make (
struct
type t = symbol
let compare (_,n1) (_,n2) = compare n1 n2

end)

let symbol name =
match Hashtbl.find_opt hashtbl name with
| Some i -> (name, i)
| None ->

let i = !nextsym in
nextsym := i + 1;
H.add hashtbl name i ;
(name, i)

type env = value SymbolMap.t
let empty_env = SymbolMap.empty
let insert e k v = raise TODO
let lookup e k = raise TODO

end;;

Make sure you understand the code and the purpose of the symbol table-based indirection.

10.8 Benchmarking

So, four ways to do the same thing!? But what is the right way? A back-of-an-envelop asymptotic analysis will tell us that
both the list-based environments and functional environments are inferior to the map-based ones (can you see why?). It
may also be instructive to do an empirical analysis to get a sense of how all four of the approaches relate to each other.
How should one benchmark these? Ideally, we should have a finished implementation of a compiler where the environment
module can be replaced and we perform an end-to-end evaluation of how different implementations affect compilper
performance. Alas, we do not have a finished (or even started) compiler. Instead, we will try to use a micro-benchmarking
approach, using an OCaml library called core_bench. You can read about the idea of micro-benchmarking and the
library we use in this Jane Street blog post.

(* Benchmarking using core_bench *)
(* This probably requires extra libraries to install using opam *)
let _ = Random.self_init();;

let random_string n =
(continues on next page)
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(continued from previous page)
String.init n (fun _ -> Char.chr(97 + (Random.int 26)))

let max_n = 2000
let name_strings = List.init max_n (fun _ -> (random_string 10))
let values = List.init max_n (fun x -> x )

module type BenchSig = sig
val approach_name : string
val bench : unit -> int

end

(* Question to students: is this a good way of doing benchmarking? *)
(* Are there any issues to discuss about this? *)
module EnvBench (E:EnvSig):BenchSig = struct

include E
let names = List.map symbol name_strings
let names_and_values = List.combine names values
let bench () =
let e1 = List.fold_left (fun e (k,v) -> insert e k v ) empty_env names_and_values␣

↪in
let s = List.fold_left (fun s n -> s + lookup e1 n ) 0 names in
s

end

(* main function *)
let () =

let open Core in
let open Core_bench in
let f m = let module M = (val m : BenchSig) in

Bench.Test.create ~name: M.approach_name M.bench
in (List.map [(module EnvBench (ListEnv) : BenchSig);

(module EnvBench (FunEnv) : BenchSig);
(module EnvBench (MapEnv) : BenchSig);
(module EnvBench (MapHashEnv) : BenchSig);
] ~f: f)

|> Bench.make_command (* we're plugging into the bench main functionality *)
|> Command_unix.run

10.8.1 Configuring and running the benchmark

We use the following dune configuration; see the list of libraries that you may need to install using opam.

(executable
(name envbench)
(libraries core core_bench core_unix.command_unix))

(install
(section bin)
(files (envbench.exe as envbench)))

(env
(dev
(flags (:standard -warn-error -A))))

With the above configuration, dune build will produce a binary envbench that we can call
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_build/install/default/bin/envbench

You will get an output that looks like follows. We have redacted the actual numbers with asterisks – run the benchmark
to see the numbers for yourself!

Estimated testing time 40s (4 benchmarks x 10s). Change using '-quota'.
┌─────────────────┬────────────┬──────────┬───────────┬───────────┬────────────┐
│ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │
├─────────────────┼────────────┼──────────┼───────────┼───────────┼────────────┤
│ List-based env │ ********** │ ******** │ ********* │ ********* │ ********** │
│ Functional env │ ********** │ ******** │ ********* │ ********* │ ********** │
│ Map-based env │ ********** │ ******** │ ********* │ ********* │ ********** │
│ Map + int H/T │ ********** │ ******** │ ********* │ ********* │ ********** │
└─────────────────┴────────────┴──────────┴───────────┴───────────┴────────────┘

The core_bench library provides a number of flags that we can study. Check them out by running

_build/install/default/bin/envbench --help
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ELEVEN

EXERCISES FOR WEEK 4

11.1 Exercise overview

This week’s exercises are about writing LLVM by hand, which will help us get some understanding of the basic structure
of LLVM programs.

11.2 Division function

11.2.1 Basic division

Write an LLVM function f_mod (a, b) that takes two 64-bit arguments a and b and returns as its result the value.
a mod b.
To start, all you need is an empty file, in which you declare your function (single-line comments in LLVM start with a
semicolon)

; save this as prog.ll
define i64 @f_mod(i64 %a, i64 %b) {

; Write your code here
; ...

}

To test your program, proceed as follows. Suppose your program is saved in a file prog.ll. Then we can use the
following C wrapper main.c.

/* save this as main.c */
#include <stdio.h>
#include <stdlib.h>

extern int f_mod(int a, int b);

int main(int argc, char *argv[]) {
if (argc != 3) {

printf("Please call this program with two arguments: %s <a> <b>\n", argv[0]);
return 1;

}

int a = atoi(argv[1]);
int b = atoi(argv[2]);

int result = f_mod(a, b);

(continues on next page)
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printf("%d\n", result);

return 0;
}

Compile and link everything with clang

clang main.c prog.ll

Run the resulting program, on several arguments, e.g., ./a.out 1 1 and ensure that you get the right behavior. What
happens when the second argument is 0?

11.2.2 Adding division by zero protection

Let us ensure that we check against division by zero. We will need two things
1. The error handling code that will ‘’gently’’ stop program execution.
2. The comparison in the LLVM code.

For the error handling code, let us add a function

int error_div_by_zero () {
printf ("Error: division by zero\n");
exit (1);

}

Our LLVM program will need a line saying that error_div_by_zero is an external function.

declare void @error_div_by_zero()

Note

Observe the difference between declare and define.

Compile, and test your implementmation, and validate that the error handling that you have implemented indeed works.

11.3 Euclidean algorithm for computing GCD in LLVM

In this task, we implement GCD calculation using Euclidean algorithm.
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11.3.1 Reference implementation in a programming language of choice.

Start off by recalling the definition of GCD and Eucli’s algorithm by implementing it in a programming language of your
choice. Write two implementation: one using a loop, and one using recursion. Check that they compute the same things.

11.3.2 LLVM implementations

• Write an LLVM function gcd_1 that implements the Euclid’s algorithm. Decide whether you want that to be a
loop-based one or a recursive one. Modify the C wrapper so that it calls gcd_1 instead of the f_mod from before.

• Write an LLVM function gcd_2 that uses the other approach for the Euclid’s algorithm. Modify the C wrapper,
one more time.

Which of the two is shorter? Which one is easier to understand?
• How many basic blocks do you have in your program. Can you rearrange the basic blocks and run your program
again. Does it change program semantics and how?

11.3.3 Hardening against divisions by zero

An important aspect of code generation in compilers is that most of the code generation for simple operations, such as
division, is context-independent. That means that if your general compilation strategy is such that you generate division
by zero checks, then it is normal for these checks to be present against all divisions. The idea is that usually it is the job
of the later phases, e.g., compilation, to perform the cleanup and remove unnecessary checks.

• Write the code for gcd_1 and gcd_2 as if it was generated by a compiler that generates division by zero checks
but that is unaware of the context surrounding the division operation.
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CHAPTER

TWELVE

EXERCISES FOR WEEK 5

12.1 Exercise overview

This week’s exercises are about programmatic generation of LLVM. There are two workhorse modules that we give you:
• ll.ml that is the module for representing LLVM programs.
• cfgBuilder is the module for on-the-fly generation of LLVM programs.

12.2 Using Ll module

This module includes the auxiliary data structures for representing LLVM– programs. The main top-level declaration is
that of prog. This module includes a pretty printer for LLVM programs in the function string_of_prog.
As an exercise, create a simple LLVM program for returning an integer value.

12.3 Using CfgBuilder

For the actual code generation, we have an auxiliary module for building CFGs. Check out the interface stored in the
.mli file.
As an exercise, generate the code for a factorial function in LLVM using this API.
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CHAPTER

THIRTEEN

EXERCISES FOR WEEK 6

13.1 Exercise overview

In this exercise we programmatically generate LLVM code for the following function (in pseudo-code)

var x = read_integer ()
if x >= 0 then

x = x + 1
else

x = x - 1
print_integer x

We start off by studying example final LLVM code that we may want to generate. We use alloca for allocating space
on the stack for variable x, and note that we do not use phi instructions here.

declare i64 @read_integer()
declare void @print_integer(i64)
define void @dolphin_main () {
%x0 = alloca i64
%t1 = call i64 @read_integer ()
store i64 %t1, i64* %x0
%t2 = icmp sge i64 %t1, 0
br i1 %t2, label %then3, label %else4

then3:
%t6 = load i64, i64* %x0
%t7 = add i64 %t6, 1
store i64 %t7, i64* %x0
br label %merge5

else4:
%t8 = load i64, i64* %x0
%t9 = sub i64 %t8, 1
store i64 %t9, i64* %x0
br label %merge5

merge5:
%t10 = load i64, i64* %x0
call void @print_integer (i64 %t10)
ret void

}

Save this in prog.ll and compile together with the runtime library provided for Assignment 4.

clang prog.ll runtime.c

Run and ensure that the program behaves as expected.
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13.2 Skeleton

One particular aspect of the CFG Builder library is that the CFG construction is non-destructive. All the helper functions
there return a new version of the CFG Builder instead of modifying it in-place. Moreover, much of the code generation
does not depend on the state of the CFG builder but is generally about extending it. For this reason, we use the notion
of CFG transformers, that we dub buildlets, and that have type cfgbuilder -> cfgbuilder so that they can be
conveniently combined.
We exemplify the usage of buildlets in the rest of the exercise. We start off with the following skeleton

module Sym = Symbol
open Ll
let symbol = Sym.symbol

let fresh_symbol =
let c = ref 0 in
fun initial ->
let n = !c in c := n + 1; symbol (initial ^ (string_of_int n))

exception NotImplemented
(* string -> insn -> CfgBuilder.buildlet * operand *)
let add_instruction_with_fresh s i =

raise NotImplemented

(* bop -> operand -> CfgBuilder.buildlet *)
let change_by_one_buildlet op loc =

let b_load, load_op = add_instruction_with_fresh "t" (Load (I64, loc)) in
let b_binop, op = add_instruction_with_fresh "t" (Binop (op, I64, load_op, IConst64␣

↪1L)) in
let b_save = CfgBuilder.add_insn (None, Store (I64, op, loc)) in
CfgBuilder.seq_buildlets [ b_load; b_binop; b_save]

(* CfgBuilder.buildlet *)
let exercise_buildlet =

(* let b_update_add = change_by_one_buildlet Add alloca_op in *)
(* ... *)
(* let b_update_sub = change_by_one_buildlet Sub alloca_op in *)

(* CfgBuilder.seq_buildlets [ b_update_add; ... ; b_update_sub ] *)
CfgBuilder.term_block (Ret (Void, None)) (* replace this with your code *)

let p : prog =
let b = exercise_buildlet CfgBuilder.empty_cfg_builder in
let cfg = CfgBuilder.get_cfg b in
let f = { fty = ([], Void); param = []; cfg = cfg} in
{
tdecls = [];
extgdecls = [];
gdecls = [];
extfuns = [ (symbol "print_integer", ([I64], Void))

; (symbol "read_integer", ([], I64))];

(continues on next page)

102 Chapter 13. Exercises for Week 6



AU Compilation, 2023

(continued from previous page)
fdecls = [ (symbol "dolphin_main", f )]

}

let _ = Printf.printf "%s" (Ll.string_of_prog p)

13.3 Building parts

A common task in code generation is to generate a fresh name for some instruction. To help us with this, we start off by
writing an auxiliary function add_instruction_with_fresh that takes a string and an instruction, and returns a
pair of two things:

• a buildlet function that corresponds to the instruction
• a freshly generated new name that is used by the instruction and can be used by the caller of this function

We exemplify the usage of this function in change_by_one_buildlet that takes a binary operation, a memory
location (presumably a result of alloca or some other memory allocation), and does the following:

• it loads the value from memory
• performs the binop
• saves the result in-place

It also returns a builder that is a sequence of the underlying buildlet combinators. Do check out the definition of
CfgBulider.seq_buildlets and make sure you understand it.

13.4 Putting it all together

Write the main body of the example. Implement the function exercise_buildlet. For the bodies of the ‘then’
and ‘else’ branches, do make use of the helper function change_by_one_buildlet. Once done, use the generated
LLVM code and test your solution.
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CHAPTER

FOURTEEN

EXERCISES FOR WEEK 7

14.1 Exercise overview

In this exercise we get to know the language Dolphin a bit better. For this purpose, we will use the online Dolphin
interpreter: https://cs.au.dk/~timany/dolphin_web/.

14.2 Syntax of Dolphin

Throughout the course we have seen many Dolphin code snippets. Therefore, we will not repeat things in great detail.
Remember, Dolphin’s syntax is heavily inspired by that of C, Java, and C#.
A Dolphin program consists of a number of function declarations and a number of record declarations. The order of
these declarations does not matter. All Dolphin programs must have a main function that takes no arguments and returns
an integer (the exit code of the program). Records are declared as follows using the record keyword:
record person {name : string; height : int; }

Records are referred to by their names. Given the record above, we can write the following program which finds the tallest
person. Here, [person] is the type of array of person.

record person {name : string; height : int; }

person tallest(prs : [person]){
var tlp : person = nil;

if(length_of(prs) > 0){
tlp = prs[0];

}

for(var i = 1; i < length_of(prs); i = i + 1){
if(prs[i].height > tlp.height)

tlp = prs[i];
}
return tlp;

}

int main(){
let stdout = get_stdout();
let prs = new person[5];
prs[0] = new person {name = "Chris"; height = 163; };
prs[1] = new person {name = "Pernille"; height = 152; };
prs[2] = new person {name = "Gudmund"; height = 180; };

(continues on next page)
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(continued from previous page)
prs[3] = new person {name = "Mathias"; height = 162; };
prs[4] = new person {name = "Nina"; height = 171; };
let tlp = tallest(prs);
output_string("The tallest person is ", stdout);
output_string(tlp.name, stdout);
output_string(" who is ", stdout);
output_string(int_to_string(tlp.height), stdout);
output_string(" cm tall.\n", stdout);
return 0;

}

Note how the new keyword is used to create both arrays and records. Note that arrays are not explicitly initialized by the
program. Dolphin automatically initializes array entries with default values, 0 for integers, false for booleans, "" for
strings, and nil for arrays and records. The let keyword creates an immutable variable, i.e., a variable that can never
be updated after it’s initialization.
Run the program above in the interpreter.

14.3 Dolphin’s standard library in the interpreter

The following standard library functions are available in the interpreter. (Things like file I/O and networking are not
supported in the interpreter.)

void exit(code : int);
stream get_stdout();
stream get_stderr();
stream get_stdin();
bool flush_file(srm : stream); // returns false when errors encountered
void output_string(str : string, srm : stream);
void output_bytes_array(bta : [byte], srm : stream);
[byte] input_bytes_array(len : int; srm : stream);
bool output_byte(b : byte, srm : stream); // returns false when errors encountered
int input_byte(stream); // returns a byte as a signed integer
int string_to_int(str : string);
string int_to_string(i : int);
string substring(str : string, start : int, len : int);
string string_concat(str1 : string, str2 : string);
string ascii_chr(c : int);
int ascii_ord(string);
byte int_to_byte_signed(i : int);
byte int_to_byte_unsigned(i : int);
int byte_to_int_signed(b : byte);
int byte_to_int_unsigned(b : byte);
[byte] string_to_bytes_array(str : string);
string bytes_array_to_string(bts : [byte]);

The type stream is a type in Dolphin defined by the standard library. It is technically treated by Dolphin as a record
type with no fields. However, programmers cannot create instances of this record. (Try it!) The stream type is used
for file and console I/O.
The type byte is a primitive type in Dolphin of exactly 1 byte size. Programmers cannot write byte literal values. The
standard library uses bytes for I/O and allows programmers to convert to and from strings and integers. Dolphin does not
enforce a signedness for bytes, hence, the conversion functions to and from integers have a signed and unsigned variant.
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14.4 Exercise

Write a program for a phone directory. It should store entries as records, with two string fields, one for the name of
the person, and another for the phone number. The directory data structure should be a collection of entries, e.g., an
array, a linked list, etc., we leave the details to you. The data structure should support adding entries, removing entries,
searching for entries (by name), and printing all entries. The latter should print entries in alphabetical order according to
their names. These operations can be destructive (update in place), or non-destructive (return a new collection), again,
we leave the details to you.
Write a main function that enters 20 entries, searches for a few names (test both existing and non-existing names), removes
2 entries, and prints the final directory.
This exercise gives a lot of freedom in how you choose to write your program, e.g., in the choice of presenting menu,
taking user’s input, etc. The purpose is to focus on getting familiar with Dolphin, not a particular way of programming.

14.4.1 Bonus

Implement a basic command-line interface (CLI), e.g., the main function should present the user with a menu like below:

Please choose one of the following actions:
1. Add an entry
2. List entries
3. Edit an entry
4. Delete an entry
5. Export as HTML
6. Exit
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CHAPTER

FIFTEEN

EXERCISES FOR WEEK 9

Extend the hashtags example (available on Brightspace) with identification of emails.
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CHAPTER

SIXTEEN

EXERCISES FOR WEEK 10

This week’s TA exercise is getting to know two items.
1. Creating dummy parsers for testing the implementation of lexers.
2. End-to-end testing of compilers (time permitting).

16.1 Dummy Parsers

A dummy parser is a parser that, rather than building an AST from the lexed tokens, simply emits each token as it is read
from the input. This is especially useful for verifying that your parser works as expected.
Your first task is to write a parser that does this.

16.2 End-to-end testing

Unlike other domains, compiler testing generally does not involve unit testing. Instead, most positive tests are end-to-end,
while negative tests are end-to-wherever-the-error-occurs. This makes the test suite more robust to modifications of the
AST and the addition of features.
Your second task is to develop an end-to-end testing framework for your compiler. You may choose to use a unit testing
framework to write your end-to-end tests, such as OUnit or Alcotest, or you may choose to hand-write your test execution.
In any case, for each test, your framework should:

• read Dolphin source code
• try to compile the source code to a binary

– if compilation fails, compare the failure to an expected error
– if compilation succeeds, execute the compiled code and compare the output to an expected output

Ideally, the entire suite should be runnable without any human interaction, and make it easy to identify which tests failed.
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SEVENTEEN

EXERCISES FOR WEEK 11

This week’s exercises are about getting to know how to use LLVM’s getelementptr (GEP) instruction.

17.1 Tuples

1. Create an LLVM struct for tuples, called Tuple, consisting of two i64 fields.
2. Create the following LLVM functions:

1. create_tuple that takes two i64 arguments, and returns a tuple initialized with these arguments. Use
the C malloc function to allocate the tuple on the heap. Discuss in class what size argument to pass to
malloc.

2. get_first that takes a tuple and returns its first element.
3. get_second that takes a tuple and returns its second element.
4. set_first that takes a tuple, and an i64 value and performs an in-place update of the first element of the

tuple.
5. set_second that takes a tuple, and an i64 value and performs an in-place update of the second element

of the tuple.
6. swap_elements that in-place swaps the first and the second elements of the tuple.

3. Write an LLVM program that tests the functionality of the above functions.
4. Modify your create_tuple function so that the allocation takes place on stack instead of the heap. Does the

program created in step (3) above still work? If yes, can you come up with a program that works in the heap-
allocated version of create_tuple but does not work in the stack-allocated version?

5. Write an LLVM function swap_tuple_array that takes three arguments:
1. a pointer to an array of tuples
2. an i64 integer i
3. an i64 integer j

This function should swap the elements i and j in the provided array.
6. Write an LLVM program that tests the functionality of the above functions.
7. Consider two alternative implementations of the Tuple

1. as an LLVM array of two fields.
2. as an LLVM pointer.

How would your implementation of the above functions change in each case?
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17.2 Nested GEPs

Consider the following C program

#include <stdlib.h>

struct B {
int p;
int *f;
int q;

};

struct A {
int g;

};

void update_two (struct A** a, struct B b) {
a[b.f[2]]->g = b.p + b.q;

}

int main() {
struct A **a = malloc(10 * sizeof(struct A*));

for (int i = 0; i < 10; ++i) {
a[i] = malloc(sizeof(struct A));
a[i]->g = 0;

}

struct B b;
update_two (a,b);

int array_for_f[3] = {0, 1, 4};
b.f = array_for_f;

return 0;
}

Compile the above function to LLVM, using -emit-llvm -S flag passed to clang. Modify the LLVM code for
function update_two to use as few GEPs as possible.

Note

Counting the number of GEPs is generally not a meaningful metric for the quality of code generation. We use it here
only as an exercise device to learn GEP.
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CHAPTER

EIGHTEEN

LLVM--

18.1 Introduction to LLVM--

LLVM-- is a subset of the LLVM intermediate representation. Our subset is heavily based on LLVMlite developed at
the University of Pennsylvania, but is further customized to the specifics of the Compilation course at Aarhus University.
This document outlines the structure of programs in the LLVM-- intermediate representation.

18.1.1 A minimal LLVM-- program

The following is an example of a small LLVM-- program that returns number 42 as its result.

define i64 @main () {
ret i64 42

}

This program can be compiled, executed, and inspected for the return value using the following sequence of shell com-
mands.

$ clang program.ll
$ ./a.out
$ echo $?
42

Here, clang invokes the LLVM compiler, assuming that the source file is program.ll. Because we do not specify
any options to clang, the compiler uses the default name a.out for the generated executable. After invoking the
executable, the OS stores its return value in the $? shell variable, and we print out the exit code using the echo shell
command.1

18.1.2 Identifiers

LLVM-- differentiates between two kinds of identifiers: global and local. Global identifiers start with the @ symbol and
are used for the definitions of global data definitions and functions. Identifiers that start with the % symbol are used for
the names of registers, named type definitions (see below), and for referring to the labels in branch instructions. LLVM
registers, e.g., %x, %y are local to each function. There is no limit on the number of registers in a function.

1 On POSIX systems the exit-code is a value between 0 and 255.
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On implicit registers in full LLVM

Note that full LLVM supports implicit register naming scheme (%0, %1, …) for function arguments and labels. Our
subset requires all arguments and labels to be explicitly named.

18.1.3 Types

LLVM is a typed intermediate language. In our subset, we distinguish between single value types, such as integers and
pointers, and aggregate types, such as structures and arrays. Additionally, we can define named types. Finally, we distin-
guish a special void type used in function declarations.

Single value types

Single value types include integers and pointers.
• Integer types These are i1, i8, i32, i64. The number after the i symbol corresponds to the number of bits.
For example, i1 is used for booleans, i8 is used for characters, and i64 is used for 64-bit integers. Note that
LLVM-- does not use 32-bit integers (with the exception of indexing into structs via GEP).

• Pointer types The syntax for declaring a pointer to a base type 𝑡 is 𝑡*. For example, i64* is a type of a pointer
to a 64-bit integer.

Aggregate types

Aggregate types include structures and statically-sized arrays.
• Structure types A structure type resembles record types in languages such as C. The syntax for the structure types
is { t1, ..., tk } where each of t1… tk is a type. For example, the following is a structure consisting of
three types {i1, i64 *, i8}. Structure types may appear nested within structure types, for example {i1,
{i64, i64*}}, {i64, {i8, i8*, i64}, i1}.

• Statically-sized array types The syntax for array types is [n x t], where n is an integer indicating the static
size of the array, and t is the array base type. For example, the type of an array with base type i64 of size 10 is
defined as [10 x i64]`. Array base types can include other types, including structure and array types.

Named types

Named types allow creating an abbreviation to other types. The identifiers used in the type definitions need to start with
% symbol; the named type definition moreover needs to use a designated type keyword. The following example declares
tuple to be a structure of two 64-bit integers.

%tuple = type {i64, i64}

Other named types may appear in named type definitions:

%tuplearray = type [10 x %tuple]

Note that our subset LLVM-- does not allow cycles in the declarations of named types.

118 Chapter 18. LLVM--



AU Compilation, 2023

Void type

In addition to the types above, there is a special void type that is used in the declaration of the methods (cf. function
header). Its purpose is similar to the void type in languages such as C or Java.

On LLVM types that are not part of our subset

Note that full LLVM contains other primitive types such as floats, vectors, labels, and x86-mmx; we do not consider
these in our subset, LLVM--.

18.2 Structure of LLVM-- Programs

An LLVM-- program consists of three parts: global data definitions, named type definitions, and function definitions.

18.2.1 Global data definitions

Global data definitions assign global identifiers to global constants. Each global identifier starts with an @ character. The
syntax uses the global keyword. An example of a global data definition is

@x = global i64 42

Here, @x is the name of the global identifier, i64 is the type of the definition and constant 42 is the value assigned to
@x.

• Global initializers Global initializers in LLVM are used to declare program constants. Similarly to types, global
initializers may be simple and aggregate: Simple initializers include integers, e.g., 0, 1, 10, 42, or a null pointer
constant. Aggregate initializers include structure initializers, e.g., {i64 0, {i64 1, i64 2}}, and static
array initializers, e.g., {i64 0, i64 1, i64 2}.

• String literals A common representation of string literals in LLVM is as arrays of type i8. There is a shorthand
syntax for declaring string literals, using c character and the string in quotes:

@s = global [5 x i8] c"Hello"

Note, however, that in our Dolphin compiler, there is some more work involved in the compilation of string literals
and we use a slightly different representation.

Finally, note that a global data definitions for type t returns a pointer to type t. Thus, the type of @x above is i64* and
the type of @s is i8*.

18.2.2 Named type definitions

The definitions of the named types uses the syntax explained in Named types. Several definitions of named types follow
each other in a sequence.

%t1 = type ...
%t2 = type ...
%t3 = type ...
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18.3 Declaring external functions

External functions, e.g., functions implemented in the C runtime, can be called fromLLVM if they are declared as external
functions. We use the declare keyword for declaring external functions as follows:

declare i64 @libfun (i64 %x)

In the above, the external function @libfun takes one arguments, x of type i64, and returns an i64.

18.4 Function declarations

Function declarations consist of a function header followed by a sequence of basic blocks in braces.

18.4.1 Function header

Function header consists of the keyword define followed by the return type of the function, the function name, and the
list of the typed argument identifiers in parentheses:

define i64 @foo (i64 %x, i8* %y, %sometype %z)

In the above, the function @foo takes three arguments: x of type i64, y of type i8*, and z of the named type
%sometype. Note the use of define keyword as opposed to declare keyword above used to declare external
functions.

18.4.2 Basic blocks

Basic blocks are the primary unit of control flow in LLVM--. They consist of a sequence of LLVM instructions followed
by a terminator. The instructions in a basic block are always executed sequentially until the execution reaches the ter-
minator. The terminators include returning from a function, conditional and unconditional branching (jumps), and a
special terminator indicating unreachable code (see below). Branching instructions take the label of the target block as
an argument. This organization ensures that the execution cannot jump into a middle of a basic block via the branching
instructions.

18.4.3 Instructions and terminators

LLVM-- subset supports the following instructions:
• Non-terminating instructions The following table lists the non-terminating instructions. Here, binop ranges over
one of the add, sub, mul, sdiv, srem, shl, lshr, ashr, and, or, xor, and the comparator argument to
the icmp instruction is one of eq, ne, slt, sle, sgt, sge.
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Name Description Example Returns a
result

binop binary operation on two operands %x = add i64 %y, 42 Yes
alloca allocate memory on the current

stack frame
%x = alloca {i64, i64} Yes

load load a value from memory %x = load i64, i64* %loc Yes
store store a value in memory store i64 %x, i64* %loc No
icmp
comparator

compare values %x = icmp ne i64 %y, 0 Yes

call call a function %x = call i64 @f(i64 %y) If non-void
bitcast ..
. to

cast a value between types w/o
changing any bits

%x = bitcast i8* %y to i64* Yes

ptrtoint .
.. to

convert a pointer to an integer %x = ptrtoint i64* %y to i64 Yes

getele-
mentptr

compute address of a subelement
in an aggregate

see GEP below Yes

phi compute result based on control-
flow (see Phi nodes)

phi i64 [0, %true_branch], [1,
%false_branch]

yes

• Terminators A terminator is one of the following four instructions:

Description Example
Conditional branch br i1 %x, label %L1, label %L2
Unconditional branch br label %L
Return with a return value ret i64 42
Return w/o a return value ret void
End of basic block is unreachable unreachable

The semantics of the conditional branch is that it jumps to the first label if the i1 value is 1 and the second label otherwise.

18.4.4 Example CFG: factorial function

We consider a simple C function

int factorial(int X) {
if (X == 0) return 1;
return X*factorial(X-1);

}

Below is the LLVM code for this function (generated by clang) and the corresponding Control Flow Graph (CFG).

define i32 @factorial(i32) {
%2 = alloca i32
%3 = alloca i32
store i32 %0, i32* %3
%4 = load i32, i32* %3
%5 = icmp eq i32 %4, 0
br i1 %5, label %6, label %7

6:
store i32 1, i32* %2

(continues on next page)
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(continued from previous page)
br label %13

7:
%8 = load i32, i32* %3
%9 = load i32, i32* %3
%10 = sub nsw i32 %9, 1
%11 = call i32 @factorial(i32 %10)
%12 = mul nsw i32 %8, %11
store i32 %12, i32* %2
br label %13

13:
%14 = load i32, i32* %2
ret i32 %14

}

There are four basic blocks here. Because this code is generated by clang it makes use of implicit identifiers (%0,%1,
%2,…). For example, %0 refers to the identifier that is the argument to the @factorial function, and %1 is the label
of the entry block.
Note that our subset, LLVM--. requires that the entry basic block is unlabeled, enforcing that the control flow cannot
accidentally jump there – this looses no generality because we can always have an empty instruction sequence in the first
basic block.
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18.5 Phi nodes

LLVMprograms are in so-called SSA form (short for static single-assignment form). That is, each register, when declared,
is initialized with a value and can never be changed subsequently. Note that the load and store instructions perform
loading from and storing to memory locations (the address may be in a register) and not registers. This raises an issue:
what if we want to assign a value to a register based on which branch we take in the program? An example of this can be
seen in the factorial example above where this problem is solved by allocating space on the stack, %2 which is written to in
both branches %6 and %7, and which is read and returned at the end of the function. A better solution to this problem is
to use so-called phi nodes which do not use stack space. A phi node is of the form phi ty [val_1, %block_1],
[val_2, %block_2], ..., [val_n, %block_n] where ty is the type of the value produced by the phi
node. The labels %block_1, …, %block_n are the labels of all the basic blocks that can branch to the basic block
where the phi node is in. The result of the phi node is val_i if the basic block where the phi is in is reached by
branching from %block_i. All values val_1, …, val_n must be of type ty.

Warning

A valid, well-formed phi node must always specify a value for any basic block that can reach the block where it
appears in. Note that in some cases a malformed phi node with the wrong labels referenced can trigger a bug in
some versions of clang that causes it to crash.

The following is the code for the factorial function adapted to use a phi node instead of stack space.

define i32 @factorial(i32) {
%2 = alloca i32
store i32 %0, i32* %2
%3 = load i32, i32* %2
%4 = icmp eq i32 %3, 0
br i1 %4, label %5, label %6

5:
br label %12

6:
%7 = load i32, i32* %2
%8 = load i32, i32* %2
%9 = sub nsw i32 %8, 1
%10 = call i32 @factorial(i32 %9)
%11 = mul nsw i32 %7, %10
br label %12

12:
%13 = phi i32 [1, %5], [%11, %6]
ret i32 %13

}

Note

In a valid LLVM program, implicit registers in a functionmust be named in-order, and without skipping any numbers.
That is, if the last declared implicit register is %10, the next implicit register declared must be %11, otherwise, LLVM
would reject the program. This is the reason why in the code above we have renamed registers compared to the original
factorial example above. In particular, in the code above %2 is what %3 was in the original factorial example above.

In the code above the returned value, register %12, is computed using a phi node. The phi node assigns value of register
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%10 to register %12 if the program reaches label %11 by branching from the basic block labeled %6. Otherwise, if the
label %11 was reached by branching from the basic block labeled %5, register %12 is assigned 1.

18.6 The getelementptr (GEP) instruction

LLVM uses the getelementptr instruction (briefly, GEP) to implement an architecture-independent way of comput-
ing addresses of subelements in aggregate data structures, such as structures or arrays. One way to make sense of GEP
is to study how C array and structs can be compiled to LLVM because C influenced the design of LLVM (and GEP in
particular). Consider the C program below:

struct Tuple {
int x;
int y;

};

int foo(struct Tuple* tuple) {
return tuple[2].y;
// Try: return tuple[0].y
// return tuple->y

}

int main (int argc, char ** argv) {
struct Tuple tuples [] = { {11, 22},

{33, 44},
{55, 66} };

return foo (tuples); // returns 66
}

This program declares a tuple structure, initializes an array of tuples and uses the function foo to access the y-component
of the second (counting from zero) element of the array. Assuming the file example.c contains this program, we can
compile, execute, and inspect the result of this program using the following shell commands:

$ clang example.c
$ ./a.out
$ echo $?
66

The following listing shows how clang translates the definition of the tuple structure to LLVM and a possible translation
for function foo. Note that this listing differs from the actual compiler output in two ways: first, we use the name Tuple
instead of struct.Tuple; second, we simplified the code for function foo in order to focus on the explanation of
GEP. We revisit the actual output at the end of this section.

%Tuple = type { i32, i32 }

define i32 @foo(%Tuple* %tuple) {
%ptr = getelementptr inbounds %Tuple, %Tuple* %tuple, i64 2, i32 1
%x = load i32, i32* %ptr
ret i32 %x

}

Observe the two last arguments to GEP: i64 2, i32 1. They encode the path to the address of tuple[2].y in the
memory. First, we ask for the pointer to the memory where the second element of the array lives – that is i64 2. Next,
we need the pointer to the y-component of the tuple. Counting from 0, it is the 1-st element of the Tuple structure.
Note that LLVM uses i32 for indexing into structures because it is highly unlikely for structures to contain more than
232 elements.
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The following picture visualizes the layout of the memory for this example, illustrating where the %tuple and %ptr
registers point to in this layout.

If we want to index into tuple[1].x, we should use the GEP instruction with the path i64 1, i32 0. For
tuple[0].y, it should be i64 0, i32 1, and so on.
There is a subtlety to GEP that is induced by the close relationship of arrays and pointers in C. A reference to an array
in C is just a pointer to the memory where the array starts, that is, the pointer to the zeroth element of the array. This
relationship is already apparent in the C declaration of the function foo where the tuple variable has type struct
Tuple*. Therefore, GEP treats every pointer as a potential array. This treatment implies that if we are given a pointer
to an LLVM structure, and we want to access the n-th element of that structure, we need to treat that pointer as if it was
a reference to a one-element array and we were accessing that one element at position 0 in that array. This means that
GEP paths for such accesses must have the form i64 0, i32 n.

18.6.1 Examining the actual output of the compiler

Armed with the above observation, let us check out the actual code generated for @foo by clang (we ignore the specifics
of inbounds and align annotations here):

%struct.Tuple = type { i32, i32 }

define i32 @foo(%struct.Tuple*) #0 {
%2 = alloca %struct.Tuple*, align 8
store %struct.Tuple* %0, %struct.Tuple** %2, align 8
%3 = load %struct.Tuple*, %struct.Tuple** %2, align 8
%4 = getelementptr inbounds

%struct.Tuple, %struct.Tuple* %3, i64 2
%5 = getelementptr inbounds

%struct.Tuple, %struct.Tuple* %4, i32 0, i32 1
%6 = load i32, i32* %5, align 4
ret i32 %6

}

The relevant parts here are the two GEPs. They do the same computation as in the version we studied earlier, except that
the task of computing the address to tuple[2].y is split into two GEP operations. The first one finds the offset to the
start of the second element of the array. That results in a pointer to a %struct.Tuple structure. The second GEP
finds the offset to the field at position 1 in that structure (once again, treating that pointer as a reference to a one-element
array and hence prefixing the path with 0).
To experiment further with this example, one can compile the C code with clang -S -emit-llvm example.c,
and modify the generated LLVM code for foo in an editor. The modified .ll file can be compiled using the command
clang example.ll.
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18.6.2 A more involved GEP example

We now consider a slightly more elaborate C program:

struct RT {
char A;
int B[10][20];
char C;

};
struct ST {

int X;
double Y;
struct RT Z;

};

int *foo(struct ST *s) {
return &s[1].Z.B[5][13];

}

The generated .ll file has the following code for foo and structure declarations.

%struct.ST = type { i32, double, %struct.RT }
%struct.RT = type { i8, [10 x [20 x i32]], i8 }

define i32* @foo(%struct.ST*) #0 {
%2 = alloca %struct.ST*, align 8
store %struct.ST* %0, %struct.ST** %2, align 8
%3 = load %struct.ST*, %struct.ST** %2, align 8
%4 = getelementptr inbounds %struct.ST, %struct.ST* %3, i64 1
%5 = getelementptr inbounds %struct.ST, %struct.ST* %4, i32 0, i32 2
%6 = getelementptr inbounds %struct.RT, %struct.RT* %5, i32 0, i32 1
%7 = getelementptr inbounds

[10 x [20 x i32]], [10 x [20 x i32]]* %6, i64 0, i64 5
%8 = getelementptr inbounds [20 x i32], [20 x i32]* %7, i64 0, i64 13
ret i32* %8

}

We invite the reader to study the GEPs generated by the compiler and see whether they can match them to the source.
One can ask an exercise question: can we rewrite this sequence of GEPs as one? The answer is yes. In fact, the code for
this function could just as well be:

define i32* @foo(%struct.ST* %arg) #0 {
%x = getelementptr inbounds

%struct.ST, %struct.ST* %arg, i64 1, i32 2, i32 1, i64 5, i64 13
ret i32* %x

}

Here, the GEP path is the sequence of operands i64 1, i32 2, i32 1, i64 5, i64 13. We can check if
the two versions compute the same offsets with the help of the clang itself. First, we expand our example as follows:

#include <stdio.h>

struct RT {
char A;
int B[10][20];
char C;

};

(continues on next page)
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(continued from previous page)
struct ST {

int X;
double Y;
struct RT Z;

};

int *foo(struct ST *s) {
return &s[1].Z.B[5][13];

}

int *bar(struct ST *s) {
return &s[1].Z.B[5][13];

}

int main (int argc, char** argv) {
int* a = foo (NULL);
int* b = bar (NULL);
printf ("foo: %p\nbar: %p\n", a, b);
return 0;

}

Observe that we have duplicated the code for foo in the function bar. The main function calls each of these with
the argument NULL. The results a and b are the offsets from the NULL pointers. This trick of using the NULL pointer
argument effectively gives us the offsets calculated by each of the functions from the base argument provided to them.
We print the offsets in main (expecting the two to be the same). Note that the program does not actually dereference
anything – dereferencing an offset from a NULL pointer would likely cause a segmentation fault at runtime – again, we
are only computing the offsets.
If we compile and run this program, we get the following output:

$ clang example-orig.c
$ ./a.out
foo: 0x510
bar: 0x510

Here, 0x510 is the offset in hexadecimal (1296 in decimal). Next, we can ask the compiler to generate the .ll file

$ clang -S -emit-llvm example.c

Now, we can go ahead and edit the code for @foo in example.ll. Save, compile, and run it.

$ clang example.ll -o example-edited
$ ./example-edited
foo: 0x510
bar: 0x510

At this point, one can further play with the LLVM code for @foo. For example, changing the last argument in the GEP
path from 13 to 12 will yield a different offset.
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18.7 Further reading

For more on LLVM instructions and GEP, please consult the relevant pages on the LLVM website:
• LLVM Reference Manual: https://www.llvm.org/docs/LangRef.html
• The Often Misunderstood GEP Instruction: https://www.llvm.org/docs/GetElementPtr.html
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LLVM-- CHEAT SHEET

It is a good idea to have this cheat sheet with you, e.g., by printing it, when writing LLVM-- code.

Description Example(s)
Integer types i1, i8, i32, i64
Structure types {i1, i64 *, i8}
Fixed-size array type [20 x i64]
Named types %tuple = type {i64, i64}
Global variables @x = global i64 10
Global string variables @s = global [5 x i8] c"Hello"
External function declarations declare i64 @libfun (i64 %x)
Function declarations define i64 @foo (i64 %x){%y = add i64 %x, 1 ret i64 %y}
Comparison operators eq, ne, sle, slt, sge, sgt
Arith/logical operators add, sub, mul, sdiv, srem, shl, lshr, ashr, and, or, xor
Arith/logical computation %x = add i64 %y, 42
Allocating on the stack %ptr = alloca i32
Loading from a pointer %val = load i32, i32* %ptr
Storing to a pointer store i32 42, i32* %ptr
Integer comparison %cmp = icmp eq i32 %val, 10
Calling void functions call void @myFun(i32 %arg1, i32 %arg2)
Calling non-void functions %z = call i8 @myFun(i32 %arg1, i32 %arg2)
Casting %ptr2 = bitcast i32* %ptr to i8*
Address of pointer %int_ptr = ptrtoint i32* %ptr to i64
Pointer arithmetic %element_ptr = getelementptr i32, i32* %array, i32 3
Phi node %res = phi i32 [ %val1, %block1 ], [ %val2, %block2 ]
Conditional branching br i1 %x, label %L1, label %L2
Unconditional branching br label %L
Returning a value ret i64 42
Returning void ret void
End of block unreachable unreachable
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X86-64

Note

We use AT&T assembly syntax. This is what clang uses.

Tip

You can use the x86-64 emulator x64-emu to experiment and practice x86-64 assembly in your browser— it supports
all (and only) the instructions and features described here.

20.1 Registers that we will use

Register Description Preserved Across Calls
rip Instruction pointer; cannot be manipulated directly Irrelevant but no!
rax General purpose; stores return value No
rbx General purpose; sometimes also used as the base pointer Yes
rcx General purpose; used for 4th argument No
rdx General purpose; used for 3rd argument No
rsp Stack pointer Yes (automatically)
rbp Can be used as base pointer Yes
rsi General purpose; used for 2nd argument No
rdi General purpose; used for 1st argument No
r8 General purpose; used for 5th argument No
r9 General purpose; used for 6th argument No
r10 General purpose No
r11 General purpose No
r12 General purpose Yes
r13 General purpose Yes
r14 General purpose Yes
r15 General purpose Yes
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20.2 The stack

In x86 the stack starts in a high address and grows towards lower addresses.
• Pushing on the stack: first decrements the stack point (rsp) by the size of the object being pushed and then writes
the value in memory pointed by the stack pointer.

• Popping from the stack: reads the value from memory where the stack pointer points and then increments the stack
pointer by the size of the object being popped.

• To allocate 16 bytes space on the stack, e.g., for storing function’s local variables, we _decrement the stack by 16
bytes:

subq $16, %rsp

20.3 Endianness

x86 is a little-endian architecture. This means that low-significance bytes are written at lower address. For example, the
four byte number 0xFFA02B1C, when written to memory at address 𝑛, is stored as follows:

Address: ⋯ 𝑛 𝑛 + 1 𝑛 + 2 𝑛 + 3 ⋯
Contents: ⋯ 1C 2B A0 FF ⋯

20.4 CPU flags

Flag Meaning
SF Set if the last arithmetic/logic instruction resulted in a negative number
ZF Set if the last arithmetic/logic instruction resulted in zero
OF Set if the last arithmetic/logic instruction resulted in an overflow
CF Set if the last arithmetic/logic instruction produced a carry
PF Set to 1 if number of 1’s resulting from the last arithmetic/logic instruction is even

20.5 Instructions that we will use

Below are categorized lists of instructions that we will use. Note that when an instruction, like movq, takes both a source
and a destination operand, both the source and the destination operands cannot be memory at the same time.

132 Chapter 20. x86-64



AU Compilation, 2023

20.5.1 Data movement instructions

In-
struc-
tion

Description Affected Flags (OF, SF,
ZF, CF, PF)

Source
Operand(s)

Destination
Operand

movq Move 64-bit value from source
to destination

- Register, Mem-
ory

Register, Mem-
ory

leaq Load effective address into reg-
ister

- Memory Register

20.5.2 Arithmetic/logic instructions

In-
struc-
tion

Description Affected Flags (OF,
SF, ZF, CF, PF)

Source
Operand(s)

Destination
Operand

incq Increment value by 1 OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

decq Decrement value by 1 OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

negq Negate value (two’s comple-
ment)

OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

addq Add source to destination OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

subq Subtract source from destination OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

imulq Signed multiply destination by
source

OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

cqto Convert quadword (rax) to
octaword (rdx:rax)

- - rdx:rax

idivq Signed divide rdx:rax by di-
visor

OF, SF, ZF, CF, PF Register,
Memory

rax (quotient), rdx
(remainder)

cmpq Compare source and destination
(sets flags)

OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

notq Bitwise NOT (complement) op-
eration

- Register,
Memory

Register, Memory

xorq Bitwise XOR destination with
source

OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

orq Bitwise OR destination with
source

OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

andq Bitwise AND destination with
source

OF, SF, ZF, CF, PF Register,
Memory

Register, Memory

shlq Shift left destination by count
bits

OF, SF, ZF, CF, PF Immediate,
cl

Register, Memory

sarq Arithmetic shift right destination
by count bits

OF, SF, ZF, CF, PF Immediate,
cl

Register, Memory

shrq Logical shift right destination by
count bits

OF, SF, ZF, CF, PF Immediate,
cl

Register, Memory
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Note

The instruction idivq does not set flags; in fact there is no guarantee what values the flags will have after idivq. If
there is an overflow (the quotient does not fit in rax), or if the divisor is zero, idivq will result in a trap (CPU level
exception caught by the operating system and usually passed to language’s runtime). Proper use of cqto instruction
should prevent overflows. It is a good idea (this is what we do in this course) to (produce code to) check that the
divisor is not zero before every division operation.

Note

The imulq instruction multiplies two 64-bit values (source and destination). The result is computed as a 128-bit
number. If the result is too big to fit in the 64-bit destination, both the OF and CF flags are set.

Note

The register cl which is used to indicate the number of shifts in shifting operations is simply the lowest byte of the
rcx register. We don’t have direct access to it in fragment we use in this course (explained in this document) but it
can be set indirectly by setting rcx accordingly.

20.5.3 Stack management

Instruc-
tion

Description Affected Flags (OF, SF, ZF,
CF, PF)

Source
Operand(s)

Destination
Operand

pushq Push value onto the
stack

- Register, Memory Stack

popq Pop value from the
stack

- Stack Register, Memory

20.5.4 Call and return

Instruc-
tion

Description Affected Flags (OF, SF, ZF,
CF, PF)

Source
Operand(s)

Destination
Operand

retq Return from function - - -
callq Call a function at des-

tination
- - Memory address
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20.5.5 Jumps

Instruc-
tion

Description Affected Flags (OF, SF,
ZF, CF, PF)

Source
Operand(s)

Destination
Operand

jmp Unconditionally jump to des-
tination

- - Memory address

je Jump if equal (ZF=1) - - Memory address
jne Jump if not equal (ZF=0) - - Memory address
jg Jump if greater (ZF=0,

SF=OF)
- - Memory address

jge Jump if greater or equal
(SF=OF)

- - Memory address

jl Jump if less (SF!=OF) - - Memory address
jle Jump if less or equal (ZF=1

or SF!=OF)
- - Memory address

20.5.6 Setting memory conditionally

In-
struc-
tion

Description Affected Flags (OF, SF,
ZF, CF, PF)

Source
Operand(s)

Destination
Operand

sete Set byte to 1 if equal (ZF=1) - - Memory
setne Set byte to 1 if not equal (ZF=0) - - Memory
setg Set byte to 1 if greater (SF=OF) - - Memory
setge Set byte to 1 if greater or equal

(SF=OF)
- - Memory

setl Set byte to 1 if less (SF!=OF) - - Memory
setle Set byte to 1 if less or equal

(ZF=1 or SF!=OF)
- - Memory

20.5.7 Instruction operands

• We write register operands with a preceding %,e.g., xorq %rax, %rax.
• We write immediate integer operands with a preceding $, e.g., $10.
• Labels (to stand for the memory addresses they refer to) can be directly used as memory operand, however, rip-
relative addressing (see below) is the preferred mode of referring to labels.

• We write indirect addresses using parentheses, e.g., (%rax) for the memory location whose address is in the
register rax — as an operand for jumping such addresses must also be preceded with an asterisk, i.e., jmp
*(%rax)..

• We write relative indirect addresses with an offset preceding parentheses, e.g., 10(%rax) for the memory location
whose address is 10 bytes after the address stored in the register rax— as an operand for jumping such addresses
must also be preceded with an asterisk, i.e., jmp *10(%rax).

Conditional jumps do not support indirect addressing. That is, while jmp *10(%rax) is a valid instruction, je
*10(%rax) is not. Such (relative) indirect conditional jumps must be encoded manually. That is, one should write the
following code instead of je *10(%rax)
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; code before jump
jne after_jump
jmp *10(%rax)
after_jump:
; code after jump

Tip

X86-64 uses so-called rip-relative addressing for making code relocatable. That is, in order to move data from a label
abc, one would write movq abc(%rip), %rax instead of movq abc, %rax. This effectively does the same
thing but is compiled in a different way so that the code is relocatable, i.e., functions correctly regardless of where in
the memory it is loaded. Rip-relative addressing can only be used both for accessing data and not jumps. Jumps to
labels are automatically made relative.

20.6 Sections in assembly code

Assembly programs are divided into so-called sections: data section(s) and code section(s). These are indicated by .data
and .text indicators in the assembly program.

20.7 labels

Points in the code or data section can be marked with a label by including a line label: before the declaration or code
being labeled.
We write .global label (on a separate line) to export a label (code or data) so it can be referred to from other
modules (other source files) that are linked with the code, e.g., to export the function func, we would write:

.text

.global main
main:

movq $0, %rax
retq

20.7.1 Storing constants

• Constant 64-bit integers can be stored in the data section by writing .quad n where 𝑛 is a the constant integer
stored.

• Constant strings can be stored in the data section by writing .asciiz "str" to store the string “str”
These constants can be accessed by their preceding labels:

string1:
.asciiz "abcd"

integer1:
.quad 123456
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20.8 Calling convention (System V ABI)

We use the System V ABI calling convention. This is to be compatible with Linux and Mac OS, and the C program-
ming language on these operating systems. See https://www.intel.com/content/dam/develop/external/us/en/documents/
mpx-linux64-abi.pdf for details.

20.8.1 Passing arguments

When calling a function, the first 6 arguments arguments are passed in registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9.
All the remaining arguments, if any, are passed on the stack, from right to left. That is, the last argument of the function
is pushed on the stack, and then, the one before last, until finally the 7th argument is pushed on the stack, before calling
the target function.

20.8.2 Callee versus caller saved registers

Each function must ensure that it preserves all callee saved registers (registers marked to be preserved across calls in the
table of registers above, e.g., rbp). These must be stored on the stack as part of the function prologue, i.e., the code
that runs immediately the beginning of the function. The only exception is the rsp register itself which is automatically
preserved by the return instruction. (Note that the function must ensure that the rsp register is exactly as it was at the
beginning of the call before it can safely invoke the return instruction because the return address is read from the stack.)

20.8.3 Function prologue and epilogue

Typical simple function prologue and epilogue can be as follows. Here we assume that rbp is the only callee-saved register
the function will touch.

function prologue

pushq %rbp ; save the caller's base pointer on the stack
movq %rsp, %rbp ; set our base pointer to the current stack pointer

; this is useful to be able to restore it and
; as an anchor for referring to variables on the stack

subq 112, %rsp ; reserve memory on stack for function's local
; variables (112 = 14 * 8)

function epilogue

movq %rbp, %rsp ; restore the rsp to where it was right after pushing %rbp
; of the caller

popq %rbp ; restore the rbp to caller's value
; the stack pointer is now exactly where it was before entering
; the function, i.e., right at the return address

retq ; return to the caller

20.8. Calling convention (System V ABI) 137

https://www.intel.com/content/dam/develop/external/us/en/documents/mpx-linux64-abi.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/mpx-linux64-abi.pdf


AU Compilation, 2023

20.8.4 Stack alignment

System V ABI calling convention mandates that at any function call the stack pointer (rsp) must be 16-byte aligned.
That is, the numeric value of rsp must be divisible by 16. The best way to ensure it is to pre-allocate all the space that
function needs on the stack in the prologue and make sure it is 16-byte aligned. The function prologue above does ensure
that the stack is in 16-byte alignment. It is a good exercise to try to convince yourself that this is indeed the case.
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SCALA OCAML CHEATSHEET

This page presents a quick reference for various OCaml features as they contrast with Scala. Please see OCaml resources
for more detail.

21.1 Operators

Caution

For equality checking use = for equal and <> for not-equals.
Do not use == or != in OCaml unless you have good reason to do so!

Scala
OCaml

==

=

!=

<>

21.2 Variables

Scala
OCaml

val x = e

let x = e

val x = e
x
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let x = e in
x

val x: Int = 1

let x: int = 1

21.3 Functions

Scala
OCaml

def f(x: Int): Int = x

let f (x: int): int = x

def add(x: Int, y: Int): Int = x + y

let add (x: int) (y: int): int = x + y

add(2, 3)

add 2 3

(x: Int) => x

fun (x: int) -> x

21.3.1 Recursive functions

OCaml requires recursive functions be marked with the rec keyword.
Scala
OCaml

def fac(n: Int): Int =
if (n < 2)

1
else

n * fac(n - 1)

let rec fac (n: int): int =
if n < 2
then 1
else n * fac (n - 1)

For mutually recursive functions we use the and keyword to make a later declared function visible.
Scala
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OCaml

def isEven(n: Int): Boolean =
if (n == 0)
true

else
isOdd(n - 1)

def isOdd(n: Int): Boolean =
if (n == 0)
false

else
isEven(n - 1)

let rec is_even (n: int): bool =
if n = 0
then true
else is_odd (n - 1)

and is_odd (n: int): bool =
if n = 0
then false
else is_even (n - 1)

21.4 Control structures

Scala
Ocaml

if (test) x else y

if test then x else y

iOpt match {
case Some(i) => i
case None => 0

}

match i_opt with
| Some(i) -> i
| None -> 0

while (test) {
body

}

while test do
body

done
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21.5 Data structures

21.5.1 Tuples

Scala
Ocaml

(1, 2, 3)

(1, 2, 3)

x._1

fst x

x._2

snd x

21.5.2 List

Scala
Ocaml

x::Nil

x::[]

List(1, 2, 3)

[1; 2; 3]

def sum(xs: List[Int]): Int =
xs.foldLeft(0)((x, acc) => x + acc)

let sum (xs: int list): int =
List.fold_left (fun x acc -> x + acc) 0 xs

21.5.3 Option

Scala
Ocaml

Some(42)

Some(42)
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None

None

21.6 Types

Scala
OCaml

(Int, Boolean)

int * bool

Int => Boolean

int -> bool

Option[T]

'a option

21.7 Operator pitfalls

21.7.1 Equality operators

OCaml has operators for both structural equality and physical equality. = is structual equals and <> is structural not-
equals. == is physical equals and != is physical not-equals. To illustrate the difference, consider the following example:

# let x = ref 0;;
# let y = ref 0;;
# x = y;;
- : bool = true
# x == y;;
- : bool = false

In this example, x = y evaluates to true because both are references to 0, while x == y evaluates to false since
they are not the same references.
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21.7.2 Comparison

Be mindful when you compare elements, as OCaml will infer an ordering on elements of any datatype you declare. This
will be the order of declaration. As an example, consider the following:

# type ex = C | B | A;;
type ex = C | B | A
# C < A;;
- : bool = true
# C < B;;
- : bool = true
# A < B;;
- : bool = false

21.8 Mutability

In Scala we can declare mutable variables with the var keyword. Instead of mutable variables OCaml has mutable
references. These represent a reference to a location in memory similar to a pointer in C. To create a reference cell in
OCaml we can use ref:

# let x = ref 0;;
val x : int ref = {contents = 0}

Note the type int ref, indicating a reference to a cell containing an integer. To read from and write to the memory
location, we can use ! (dereference) and := (assignment).

# !x;;
- : int = 0
# x := 1;;
- : unit = ()
# !x;;
- : int = 1

If we have two references two the same memory cell, changes will be reflected:

# let y = x;;
val y : int ref = {contents = 1}
# !y;;
- : int = 1
# x := 0;;
- : unit = ()
# !y;;
- : int = 0

Finally, consider the following examples of an imperative factorial function:
Scala
OCaml

def fac(n: Int): Int = {
var acc = 1
var res = 1
while (acc <= n) {

(continues on next page)
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(continued from previous page)
res = res * acc
acc = acc + 1

}
res

}

let fac (n: int): int =
let acc = ref 1 in
let res = ref 1 in
while !acc <= n do
res := !res * !acc;
acc := !acc + 1

done;
!res
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DEVELOPMENT CONTAINER

We have a Docker container with most of the relevant software for the course. This container can be plugged into the
VSCode’s development-in-the-container extension as follows.

1. Make sure you have the Visual Studio Code Dev Containers extension.
2. Make sure you have a recent version of Docker (usually a good idea to update from the previous semester).

In the main folder of your project, create a folder .devcontainer and in that folder create a file devcontainer.
json that includes the following configuration:

{
"name": "dOvs container",
"image": "ghcr.io/au-compilers/dovs_container:main",
"customizations": {

"vscode": {
"extensions": ["ocamllabs.ocaml-platform"]

},
"settings": {

"terminal.integrated.profiles.linux": {
"bash": {

"path": "bash",
"icon": "terminal-bash"

}
},
"terminal.integrated.defaultProfile.linux": "bash"

}
}

}

Ask VSCode to reopen your project in a container: F1 -> Dev Container: Reopen in Container. First
time, it will download the container and build it locally. On subsequent runs, this should not be necessary, unless there
are changes either in the configuration or the container itself. If you experience slow build times, it may make sense to
slightly tweak mounting configuration of your _build directories. There may be some caveats with that, so please ask on
the forum.
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BIBLIOGRAPHY

Note

This page has a known rendering bug due to upstream dependencies.
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